Abstract:Deep learning models have shown strong performance in load forecasting, but they generally require large amounts of data for model training before being applied to new scenarios, which limits their effectiveness in data-scarce scenarios. Inspired by the great success of pre-trained language models (LLMs) in natural language processing, this paper proposes a zero-shot load forecasting approach using an advanced LLM framework denoted as the Chronos model. By utilizing its extensive pre-trained knowledge, the Chronos model enables accurate load forecasting in data-scarce scenarios without the need for extensive data-specific training. Simulation results across five real-world datasets demonstrate that the Chronos model significantly outperforms nine popular baseline models for both deterministic and probabilistic load forecasting with various forecast horizons (e.g., 1 to 48 hours), even though the Chronos model is neither tailored nor fine-tuned to these specific load datasets. Notably, Chronos reduces root mean squared error (RMSE), continuous ranked probability score (CRPS), and quantile score (QS) by approximately 7.34%-84.30%, 19.63%-60.06%, and 22.83%-54.49%, respectively, compared to baseline models. These results highlight the superiority and flexibility of the Chronos model, positioning it as an effective solution in data-scarce scenarios.
Abstract:Machine learning models (e.g., neural networks) achieve high accuracy in wind power forecasting, but they are usually regarded as black boxes that lack interpretability. To address this issue, the paper proposes a glass-box approach that combines exceptional accuracy with transparency for wind power forecasting. Specifically, advanced artificial intelligence methods (e.g., gradient boosting) are innovatively employed to create shape functions within the forecasting model. These functions effectively map the intricate non-linear relationships between wind power output and input features. Furthermore, the forecasting model is enriched by incorporating interaction terms that adeptly capture interdependencies and synergies among the input features. Simulation results show that the proposed glass-box approach effectively interprets the results of wind power forecasting from both global and instance perspectives. Besides, it outperforms most benchmark models and exhibits comparable performance to the best-performing neural networks. This dual strength of transparency and high accuracy positions the proposed glass-box approach as a compelling choice for reliable wind power forecasting.