Abstract:Autonomous driving is a challenging task that requires perceiving and understanding the surrounding environment for safe trajectory planning. While existing vision-based end-to-end models have achieved promising results, these methods are still facing the challenges of vision understanding, decision reasoning and scene generalization. To solve these issues, a generative planning with 3D-vision language pre-training model named GPVL is proposed for end-to-end autonomous driving. The proposed paradigm has two significant aspects. On one hand, a 3D-vision language pre-training module is designed to bridge the gap between visual perception and linguistic understanding in the bird's eye view. On the other hand, a cross-modal language model is introduced to generate holistic driving decisions and fine-grained trajectories with perception and navigation information in an auto-regressive manner. Experiments on the challenging nuScenes dataset demonstrate that the proposed scheme achieves excellent performances compared with state-of-the-art methods. Besides, the proposed GPVL presents strong generalization ability and real-time potential when handling high-level commands in various scenarios. It is believed that the effective, robust and efficient performance of GPVL is crucial for the practical application of future autonomous driving systems. Code is available at https://github.com/ltp1995/GPVL
Abstract:Recent advancements in proactive dialogues have garnered significant attention, particularly for more complex objectives (e.g. emotion support and persuasion). Unlike traditional task-oriented dialogues, proactive dialogues demand advanced policy planning and adaptability, requiring rich scenarios and comprehensive policy repositories to develop such systems. However, existing approaches tend to rely on Large Language Models (LLMs) for user simulation and online learning, leading to biases that diverge from realistic scenarios and result in suboptimal efficiency. Moreover, these methods depend on manually defined, context-independent, coarse-grained policies, which not only incur high expert costs but also raise concerns regarding their completeness. In our work, we highlight the potential for automatically discovering policies directly from raw, real-world dialogue records. To this end, we introduce a novel dialogue policy planning framework, LDPP. It fully automates the process from mining policies in dialogue records to learning policy planning. Specifically, we employ a variant of the Variational Autoencoder to discover fine-grained policies represented as latent vectors. After automatically annotating the data with these latent policy labels, we propose an Offline Hierarchical Reinforcement Learning (RL) algorithm in the latent space to develop effective policy planning capabilities. Our experiments demonstrate that LDPP outperforms existing methods on two proactive scenarios, even surpassing ChatGPT with only a 1.8-billion-parameter LLM.
Abstract:In recent years, advanced U-like networks have demonstrated remarkable performance in medical image segmentation tasks. However, their drawbacks, including excessive parameters, high computational complexity, and slow inference speed, pose challenges for practical implementation in scenarios with limited computational resources. Existing lightweight U-like networks have alleviated some of these problems, but they often have pre-designed structures and consist of inseparable modules, limiting their application scenarios. In this paper, we propose three plug-and-play decoders by employing different discretization methods of the neural memory Ordinary Differential Equations (nmODEs). These decoders integrate features at various levels of abstraction by processing information from skip connections and performing numerical operations on upward path. Through experiments on the PH2, ISIC2017, and ISIC2018 datasets, we embed these decoders into different U-like networks, demonstrating their effectiveness in significantly reducing the number of parameters and FLOPs while maintaining performance. In summary, the proposed discretized nmODEs decoders are capable of reducing the number of parameters by about 20% ~ 50% and FLOPs by up to 74%, while possessing the potential to adapt to all U-like networks. Our code is available at https://github.com/nayutayuki/Lightweight-nmODE-Decoders-For-U-like-networks.
Abstract:Data-free knowledge distillation (DFKD) has emerged as a pivotal technique in the domain of model compression, substantially reducing the dependency on the original training data. Nonetheless, conventional DFKD methods that employ synthesized training data are prone to the limitations of inadequate diversity and discrepancies in distribution between the synthesized and original datasets. To address these challenges, this paper introduces an innovative approach to DFKD through diverse diffusion augmentation (DDA). Specifically, we revise the paradigm of common data synthesis in DFKD to a composite process through leveraging diffusion models subsequent to data synthesis for self-supervised augmentation, which generates a spectrum of data samples with similar distributions while retaining controlled variations. Furthermore, to mitigate excessive deviation in the embedding space, we introduce an image filtering technique grounded in cosine similarity to maintain fidelity during the knowledge distillation process. Comprehensive experiments conducted on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets showcase the superior performance of our method across various teacher-student network configurations, outperforming the contemporary state-of-the-art DFKD methods. Code will be available at:https://github.com/SLGSP/DDA.
Abstract:Recently, prompt learning has garnered considerable attention for its success in various Vision-Language (VL) tasks. However, existing prompt-based models are primarily focused on studying prompt generation and prompt strategies with complete modality settings, which does not accurately reflect real-world scenarios where partial modality information may be missing. In this paper, we present the first comprehensive investigation into prompt learning behavior when modalities are incomplete, revealing the high sensitivity of prompt-based models to missing modalities. To this end, we propose a novel Multi-step Adaptive Prompt Learning (MuAP) framework, aiming to generate multimodal prompts and perform multi-step prompt tuning, which adaptively learns knowledge by iteratively aligning modalities. Specifically, we generate multimodal prompts for each modality and devise prompt strategies to integrate them into the Transformer model. Subsequently, we sequentially perform prompt tuning from single-stage and alignment-stage, allowing each modality-prompt to be autonomously and adaptively learned, thereby mitigating the imbalance issue caused by only textual prompts that are learnable in previous works. Extensive experiments demonstrate the effectiveness of our MuAP and this model achieves significant improvements compared to the state-of-the-art on all benchmark datasets
Abstract:In recent years, employing layer attention to enhance interaction among hierarchical layers has proven to be a significant advancement in building network structures. In this paper, we delve into the distinction between layer attention and the general attention mechanism, noting that existing layer attention methods achieve layer interaction on fixed feature maps in a static manner. These static layer attention methods limit the ability for context feature extraction among layers. To restore the dynamic context representation capability of the attention mechanism, we propose a Dynamic Layer Attention (DLA) architecture. The DLA comprises dual paths, where the forward path utilizes an improved recurrent neural network block, named Dynamic Sharing Unit (DSU), for context feature extraction. The backward path updates features using these shared context representations. Finally, the attention mechanism is applied to these dynamically refreshed feature maps among layers. Experimental results demonstrate the effectiveness of the proposed DLA architecture, outperforming other state-of-the-art methods in image recognition and object detection tasks. Additionally, the DSU block has been evaluated as an efficient plugin in the proposed DLA architecture.The code is available at https://github.com/tunantu/Dynamic-Layer-Attention.
Abstract:In proactive dialogue, the challenge lies not just in generating responses but in steering conversations toward predetermined goals, a task where Large Language Models (LLMs) typically struggle due to their reactive nature. Traditional approaches to enhance dialogue planning in LLMs, ranging from elaborate prompt engineering to the integration of policy networks, either face efficiency issues or deliver suboptimal performance. Inspired by the dualprocess theory in psychology, which identifies two distinct modes of thinking - intuitive (fast) and analytical (slow), we propose the Dual-Process Dialogue Planning (DPDP) framework. DPDP embodies this theory through two complementary planning systems: an instinctive policy model for familiar contexts and a deliberative Monte Carlo Tree Search (MCTS) mechanism for complex, novel scenarios. This dual strategy is further coupled with a novel two-stage training regimen: offline Reinforcement Learning for robust initial policy model formation followed by MCTS-enhanced on-the-fly learning, which ensures a dynamic balance between efficiency and strategic depth. Our empirical evaluations across diverse dialogue tasks affirm DPDP's superiority in achieving both high-quality dialogues and operational efficiency, outpacing existing methods.
Abstract:The nature of diversity in real-world environments necessitates neural network models to expand from closed category settings to accommodate novel emerging categories. In this paper, we study the open-vocabulary object detection (OVD), which facilitates the detection of novel object classes under the supervision of only base annotations and open-vocabulary knowledge. However, we find that the inadequacy of neighboring relationships between regions during the alignment process inevitably constrains the performance on recent distillation-based OVD strategies. To this end, we propose Neighboring Region Attention Alignment (NRAA), which performs alignment within the attention mechanism of a set of neighboring regions to boost the open-vocabulary inference. Specifically, for a given proposal region, we randomly explore the neighboring boxes and conduct our proposed neighboring region attention (NRA) mechanism to extract relationship information. Then, this interaction information is seamlessly provided into the distillation procedure to assist the alignment between the detector and the pre-trained vision-language models (VLMs). Extensive experiments validate that our proposed model exhibits superior performance on open-vocabulary benchmarks.
Abstract:As an essential task in autonomous driving (AD), motion prediction aims to predict the future states of surround objects for navigation. One natural solution is to estimate the position of other agents in a step-by-step manner where each predicted time-step is conditioned on both observed time-steps and previously predicted time-steps, i.e., autoregressive prediction. Pioneering works like SocialLSTM and MFP design their decoders based on this intuition. However, almost all state-of-the-art works assume that all predicted time-steps are independent conditioned on observed time-steps, where they use a single linear layer to generate positions of all time-steps simultaneously. They dominate most motion prediction leaderboards due to the simplicity of training MLPs compared to autoregressive networks. In this paper, we introduce the GPT style next token prediction into motion forecasting. In this way, the input and output could be represented in a unified space and thus the autoregressive prediction becomes more feasible. However, different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations. To this end, we propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations, e.g., encoding the transformation between coordinate systems for spatial relativity while adopting RoPE for temporal relativity. Empirically, by equipping with the aforementioned tailored designs, the proposed method achieves state-of-the-art performance in the Waymo Open Motion and Waymo Interaction datasets. Notably, AMP outperforms other recent autoregressive motion prediction methods: MotionLM and StateTransformer, which demonstrates the effectiveness of the proposed designs.
Abstract:Scene graph generation (SGG) endeavors to predict visual relationships between pairs of objects within an image. Prevailing SGG methods traditionally assume a one-off learning process for SGG. This conventional paradigm may necessitate repetitive training on all previously observed samples whenever new relationships emerge, mitigating the risk of forgetting previously acquired knowledge. This work seeks to address this pitfall inherent in a suite of prior relationship predictions. Motivated by the achievements of in-context learning in pretrained language models, our approach imbues the model with the capability to predict relationships and continuously acquire novel knowledge without succumbing to catastrophic forgetting. To achieve this goal, we introduce a novel and pragmatic framework for scene graph generation, namely Lifelong Scene Graph Generation (LSGG), where tasks, such as predicates, unfold in a streaming fashion. In this framework, the model is constrained to exclusive training on the present task, devoid of access to previously encountered training data, except for a limited number of exemplars, but the model is tasked with inferring all predicates it has encountered thus far. Rigorous experiments demonstrate the superiority of our proposed method over state-of-the-art SGG models in the context of LSGG across a diverse array of metrics. Besides, extensive experiments on the two mainstream benchmark datasets, VG and Open-Image(v6), show the superiority of our proposed model to a number of competitive SGG models in terms of continuous learning and conventional settings. Moreover, comprehensive ablation experiments demonstrate the effectiveness of each component in our model.