Siemens
Abstract:Dynamic scenes contain intricate spatio-temporal information, crucial for mobile robots, UAVs, and autonomous driving systems to make informed decisions. Parsing these scenes into semantic triplets <Subject-Predicate-Object> for accurate Scene Graph Generation (SGG) is highly challenging due to the fluctuating spatio-temporal complexity. Inspired by the reasoning capabilities of Large Language Models (LLMs), we propose SceneLLM, a novel framework that leverages LLMs as powerful scene analyzers for dynamic SGG. Our framework introduces a Video-to-Language (V2L) mapping module that transforms video frames into linguistic signals (scene tokens), making the input more comprehensible for LLMs. To better encode spatial information, we devise a Spatial Information Aggregation (SIA) scheme, inspired by the structure of Chinese characters, which encodes spatial data into tokens. Using Optimal Transport (OT), we generate an implicit language signal from the frame-level token sequence that captures the video's spatio-temporal information. To further improve the LLM's ability to process this implicit linguistic input, we apply Low-Rank Adaptation (LoRA) to fine-tune the model. Finally, we use a transformer-based SGG predictor to decode the LLM's reasoning and predict semantic triplets. Our method achieves state-of-the-art results on the Action Genome (AG) benchmark, and extensive experiments show the effectiveness of SceneLLM in understanding and generating accurate dynamic scene graphs.
Abstract:Artificial General Intelligence (AGI), widely regarded as the fundamental goal of artificial intelligence, represents the realization of cognitive capabilities that enable the handling of general tasks with human-like proficiency. Researchers in brain-inspired AI seek inspiration from the operational mechanisms of the human brain, aiming to replicate its functional rules in intelligent models. Moreover, with the rapid development of large-scale models in recent years, the concept of agents has garnered increasing attention, with researchers widely recognizing it as a necessary pathway toward achieving AGI. In this article, we propose the concept of a brain-inspired AI agent and analyze how to extract relatively feasible and agent-compatible cortical region functionalities and their associated functional connectivity networks from the complex mechanisms of the human brain. Implementing these structures within an agent enables it to achieve basic cognitive intelligence akin to human capabilities. Finally, we explore the limitations and challenges for realizing brain-inspired agents and discuss their future development.
Abstract:Recent advancements in video anomaly understanding (VAU) have opened the door to groundbreaking applications in various fields, such as traffic monitoring and industrial automation. While the current benchmarks in VAU predominantly emphasize the detection and localization of anomalies. Here, we endeavor to delve deeper into the practical aspects of VAU by addressing the essential questions: "what anomaly occurred?", "why did it happen?", and "how severe is this abnormal event?". In pursuit of these answers, we introduce a comprehensive benchmark for Exploring the Causation of Video Anomalies (ECVA). Our benchmark is meticulously designed, with each video accompanied by detailed human annotations. Specifically, each instance of our ECVA involves three sets of human annotations to indicate "what", "why" and "how" of an anomaly, including 1) anomaly type, start and end times, and event descriptions, 2) natural language explanations for the cause of an anomaly, and 3) free text reflecting the effect of the abnormality. Building upon this foundation, we propose a novel prompt-based methodology that serves as a baseline for tackling the intricate challenges posed by ECVA. We utilize "hard prompt" to guide the model to focus on the critical parts related to video anomaly segments, and "soft prompt" to establish temporal and spatial relationships within these anomaly segments. Furthermore, we propose AnomEval, a specialized evaluation metric crafted to align closely with human judgment criteria for ECVA. This metric leverages the unique features of the ECVA dataset to provide a more comprehensive and reliable assessment of various video large language models. We demonstrate the efficacy of our approach through rigorous experimental analysis and delineate possible avenues for further investigation into the comprehension of video anomaly causation.
Abstract:Koopman operator theory has gained significant attention in recent years for identifying discrete-time nonlinear systems by embedding them into an infinite-dimensional linear vector space. However, providing stability guarantees while learning the continuous-time dynamics, especially under conditions of relatively low observation frequency, remains a challenge within the existing Koopman-based learning frameworks. To address this challenge, we propose an algorithmic framework to simultaneously learn the vector field and Lyapunov functions for unknown nonlinear systems, using a limited amount of data sampled across the state space and along the trajectories at a relatively low sampling frequency. The proposed framework builds upon recently developed high-accuracy Koopman generator learning for capturing transient system transitions and physics-informed neural networks for training Lyapunov functions. We show that the learned Lyapunov functions can be formally verified using a satisfiability modulo theories (SMT) solver and provide less conservative estimates of the region of attraction compared to existing methods.
Abstract:At present, deep neural network methods have played a dominant role in face alignment field. However, they generally use predefined network structures to predict landmarks, which tends to learn general features and leads to mediocre performance, e.g., they perform well on neutral samples but struggle with faces exhibiting large poses or occlusions. Moreover, they cannot effectively deal with semantic gaps and ambiguities among features at different scales, which may hinder them from learning efficient features. To address the above issues, in this paper, we propose a Dynamic Semantic-Aggregation Transformer (DSAT) for more discriminative and representative feature (i.e., specialized feature) learning. Specifically, a Dynamic Semantic-Aware (DSA) model is first proposed to partition samples into subsets and activate the specific pathways for them by estimating the semantic correlations of feature channels, making it possible to learn specialized features from each subset. Then, a novel Dynamic Semantic Specialization (DSS) model is designed to mine the homogeneous information from features at different scales for eliminating the semantic gap and ambiguities and enhancing the representation ability. Finally, by integrating the DSA model and DSS model into our proposed DSAT in both dynamic architecture and dynamic parameter manners, more specialized features can be learned for achieving more precise face alignment. It is interesting to show that harder samples can be handled by activating more feature channels. Extensive experiments on popular face alignment datasets demonstrate that our proposed DSAT outperforms state-of-the-art models in the literature.Our code is available at https://github.com/GERMINO-LiuHe/DSAT.
Abstract:Despite inheriting security measures from underlying language models, Vision-Language Models (VLMs) may still be vulnerable to safety alignment issues. Through empirical analysis, we uncover two critical findings: scenario-matched images can significantly amplify harmful outputs, and contrary to common assumptions in gradient-based attacks, minimal loss values do not guarantee optimal attack effectiveness. Building on these insights, we introduce MLAI (Multi-Loss Adversarial Images), a novel jailbreak framework that leverages scenario-aware image generation for semantic alignment, exploits flat minima theory for robust adversarial image selection, and employs multi-image collaborative attacks for enhanced effectiveness. Extensive experiments demonstrate MLAI's significant impact, achieving attack success rates of 77.75% on MiniGPT-4 and 82.80% on LLaVA-2, substantially outperforming existing methods by margins of 34.37% and 12.77% respectively. Furthermore, MLAI shows considerable transferability to commercial black-box VLMs, achieving up to 60.11% success rate. Our work reveals fundamental visual vulnerabilities in current VLMs safety mechanisms and underscores the need for stronger defenses. Warning: This paper contains potentially harmful example text.
Abstract:Visual Question Generation (VQG) has gained significant attention due to its potential in educational applications. However, VQG researches mainly focus on natural images, neglecting diagrams in educational materials used to assess students' conceptual understanding. To address this gap, we introduce DiagramQG, a dataset containing 8,372 diagrams and 19,475 questions across various subjects. DiagramQG introduces concept and target text constraints, guiding the model to generate concept-focused questions for educational purposes. Meanwhile, we present the Hierarchical Knowledge Integration framework for Diagram Question Generation (HKI-DQG) as a strong baseline. This framework obtains multi-scale patches of diagrams and acquires knowledge using a visual language model with frozen parameters. It then integrates knowledge, text constraints and patches to generate concept-focused questions. We evaluate the performance of existing VQG models, open-source and closed-source vision-language models, and HKI-DQG on the DiagramQG dataset. Our HKI-DQG outperform existing methods, demonstrating that it serves as a strong baseline. Furthermore, to assess its generalizability, we apply HKI-DQG to two other VQG datasets of natural images, namely VQG-COCO and K-VQG, achieving state-of-the-art performance.The dataset and code are available at https://dxzxy12138.github.io/diagramqg-home.
Abstract:As one of the automotive sensors that have emerged in recent years, 4D millimeter-wave radar has a higher resolution than conventional 3D radar and provides precise elevation measurements. But its point clouds are still sparse and noisy, making it challenging to meet the requirements of autonomous driving. Camera, as another commonly used sensor, can capture rich semantic information. As a result, the fusion of 4D radar and camera can provide an affordable and robust perception solution for autonomous driving systems. However, previous radar-camera fusion methods have not yet been thoroughly investigated, resulting in a large performance gap compared to LiDAR-based methods. Specifically, they ignore the feature-blurring problem and do not deeply interact with image semantic information. To this end, we present a simple but effective multi-stage sampling fusion (MSSF) network based on 4D radar and camera. On the one hand, we design a fusion block that can deeply interact point cloud features with image features, and can be applied to commonly used single-modal backbones in a plug-and-play manner. The fusion block encompasses two types, namely, simple feature fusion (SFF) and multiscale deformable feature fusion (MSDFF). The SFF is easy to implement, while the MSDFF has stronger fusion abilities. On the other hand, we propose a semantic-guided head to perform foreground-background segmentation on voxels with voxel feature re-weighting, further alleviating the problem of feature blurring. Extensive experiments on the View-of-Delft (VoD) and TJ4DRadset datasets demonstrate the effectiveness of our MSSF. Notably, compared to state-of-the-art methods, MSSF achieves a 7.0% and 4.0% improvement in 3D mean average precision on the VoD and TJ4DRadSet datasets, respectively. It even surpasses classical LiDAR-based methods on the VoD dataset.
Abstract:Multimodal LLMs (MLLMs) have emerged as an extension of Large Language Models (LLMs), enabling the integration of various modalities. However, Any-to-Any MLLMs are limited to generating pairwise modalities 'Text + X' within a single response, such as Text + {Image or Audio or Video}. To address this limitation, we introduce Spider, a novel efficient Any-to-Many Modalities Generation (AMMG) framework, which can generate an arbitrary combination of modalities 'Text + Xs', such as Text + {Image and Audio and Video}. To achieve efficient AMMG, our Spider integrates three core components: a Base Model for basic X-to-X (i.e., Any-to-Any) modality processing, a novel Efficient Decoders-Controller for controlling multimodal Decoders to generate Xs (many-modal) contents, and an Any-to-Many Instruction Template designed for producing Xs signal prompts. To train Spider, we constructed a novel Text-formatted Many-Modal (TMM) dataset, which facilitates the learning of the X-to-Xs (i.e., Any-to-Many) capability necessary for AMMG. Ultimately, the well-trained Spider generates a pseudo X-to-Xs dataset, the first-ever X-to-Xs many-modal dataset, enhancing the potential for AMMG task in future research. Overall, this work not only pushes the boundary of multimodal interaction but also provides rich data support for advancing the field.
Abstract:Morphological methods play a crucial role in remote sensing image processing, due to their ability to capture and preserve small structural details. However, most of the existing deep learning models for semantic segmentation are based on the encoder-decoder architecture including U-net and Segment Anything Model (SAM), where the downsampling process tends to discard fine details. In this paper, we propose a new approach that integrates learnable morphological skeleton prior into deep neural networks using the variational method. To address the difficulty in backpropagation in neural networks caused by the non-differentiability presented in classical morphological operations, we provide a smooth representation of the morphological skeleton and design a variational segmentation model integrating morphological skeleton prior by employing operator splitting and dual methods. Then, we integrate this model into the network architecture of SAM, which is achieved by adding a token to mask decoder and modifying the final sigmoid layer, ensuring the final segmentation results preserve the skeleton structure as much as possible. Experimental results on remote sensing datasets, including buildings and roads, demonstrate that our method outperforms the original SAM on slender object segmentation and exhibits better generalization capability.