Abstract:Although mainstream unsupervised anomaly detection (AD) (including image-level classification and pixel-level segmentation)algorithms perform well in academic datasets, their performance is limited in practical application due to the ideal experimental setting of clean training data. Training with noisy data is an inevitable problem in real-world anomaly detection but is seldom discussed. This paper is the first to consider fully unsupervised industrial anomaly detection (i.e., unsupervised AD with noisy data). To solve this problem, we proposed memory-based unsupervised AD methods, SoftPatch and SoftPatch+, which efficiently denoise the data at the patch level. Noise discriminators are utilized to generate outlier scores for patch-level noise elimination before coreset construction. The scores are then stored in the memory bank to soften the anomaly detection boundary. Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset, and SoftPatch+ has more robust performance which is articularly useful in real-world industrial inspection scenarios with high levels of noise (from 10% to 40%). Comprehensive experiments conducted in diverse noise scenarios demonstrate that both SoftPatch and SoftPatch+ outperform the state-of-the-art AD methods on the MVTecAD, ViSA, and BTAD benchmarks. Furthermore, the performance of SoftPatch and SoftPatch+ is comparable to that of the noise-free methods in conventional unsupervised AD setting. The code of the proposed methods can be found at https://github.com/TencentYoutuResearch/AnomalyDetection-SoftPatch.
Abstract:In the field of industrial inspection, Multimodal Large Language Models (MLLMs) have a high potential to renew the paradigms in practical applications due to their robust language capabilities and generalization abilities. However, despite their impressive problem-solving skills in many domains, MLLMs' ability in industrial anomaly detection has not been systematically studied. To bridge this gap, we present MMAD, the first-ever full-spectrum MLLMs benchmark in industrial Anomaly Detection. We defined seven key subtasks of MLLMs in industrial inspection and designed a novel pipeline to generate the MMAD dataset with 39,672 questions for 8,366 industrial images. With MMAD, we have conducted a comprehensive, quantitative evaluation of various state-of-the-art MLLMs. The commercial models performed the best, with the average accuracy of GPT-4o models reaching 74.9%. However, this result falls far short of industrial requirements. Our analysis reveals that current MLLMs still have significant room for improvement in answering questions related to industrial anomalies and defects. We further explore two training-free performance enhancement strategies to help models improve in industrial scenarios, highlighting their promising potential for future research.
Abstract:Anomaly detection, the technique of identifying abnormal samples using only normal samples, has attracted widespread interest in industry. Existing one-model-per-category methods often struggle with limited generalization capabilities due to their focus on a single category, and can fail when encountering variations in product. Recent feature reconstruction methods, as representatives in one-model-all-categories schemes, face challenges including reconstructing anomalous samples and blurry reconstructions. In this paper, we creatively combine a diffusion model and a transformer for multi-class anomaly detection. This approach leverages diffusion to obtain high-frequency information for refinement, greatly alleviating the blurry reconstruction problem while maintaining the sampling efficiency of the reverse diffusion process. The task is transformed into image inpainting to disconnect the input-output correlation, thereby mitigating the "identical shortcuts" problem and avoiding the model from reconstructing anomalous samples. Besides, we introduce category-awareness using dual conditioning to ensure the accuracy of prediction and reconstruction in the reverse diffusion process, preventing excessive deviation from the target category, thus effectively enabling multi-class anomaly detection. Futhermore, Spatio-temporal fusion is also employed to fuse heatmaps predicted at different timesteps and scales, enhancing the performance of multi-class anomaly detection. Extensive experiments on benchmark datasets demonstrate the superior performance and exceptional multi-class anomaly detection capabilities of our proposed method compared to others.
Abstract:Although mainstream unsupervised anomaly detection (AD) algorithms perform well in academic datasets, their performance is limited in practical application due to the ideal experimental setting of clean training data. Training with noisy data is an inevitable problem in real-world anomaly detection but is seldom discussed. This paper considers label-level noise in image sensory anomaly detection for the first time. To solve this problem, we proposed a memory-based unsupervised AD method, SoftPatch, which efficiently denoises the data at the patch level. Noise discriminators are utilized to generate outlier scores for patch-level noise elimination before coreset construction. The scores are then stored in the memory bank to soften the anomaly detection boundary. Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset. Comprehensive experiments in various noise scenes demonstrate that SoftPatch outperforms the state-of-the-art AD methods on the MVTecAD and BTAD benchmarks and is comparable to those methods under the setting without noise.
Abstract:Industrial anomaly detection (IAD) has garnered significant attention and experienced rapid development. However, the recent development of IAD approach has encountered certain difficulties due to dataset limitations. On the one hand, most of the state-of-the-art methods have achieved saturation (over 99% in AUROC) on mainstream datasets such as MVTec, and the differences of methods cannot be well distinguished, leading to a significant gap between public datasets and actual application scenarios. On the other hand, the research on various new practical anomaly detection settings is limited by the scale of the dataset, posing a risk of overfitting in evaluation results. Therefore, we propose a large-scale, Real-world, and multi-view Industrial Anomaly Detection dataset, named Real-IAD, which contains 150K high-resolution images of 30 different objects, an order of magnitude larger than existing datasets. It has a larger range of defect area and ratio proportions, making it more challenging than previous datasets. To make the dataset closer to real application scenarios, we adopted a multi-view shooting method and proposed sample-level evaluation metrics. In addition, beyond the general unsupervised anomaly detection setting, we propose a new setting for Fully Unsupervised Industrial Anomaly Detection (FUIAD) based on the observation that the yield rate in industrial production is usually greater than 60%, which has more practical application value. Finally, we report the results of popular IAD methods on the Real-IAD dataset, providing a highly challenging benchmark to promote the development of the IAD field.
Abstract:Unsupervised Anomaly Detection (UAD) with incremental training is crucial in industrial manufacturing, as unpredictable defects make obtaining sufficient labeled data infeasible. However, continual learning methods primarily rely on supervised annotations, while the application in UAD is limited due to the absence of supervision. Current UAD methods train separate models for different classes sequentially, leading to catastrophic forgetting and a heavy computational burden. To address this issue, we introduce a novel Unsupervised Continual Anomaly Detection framework called UCAD, which equips the UAD with continual learning capability through contrastively-learned prompts. In the proposed UCAD, we design a Continual Prompting Module (CPM) by utilizing a concise key-prompt-knowledge memory bank to guide task-invariant `anomaly' model predictions using task-specific `normal' knowledge. Moreover, Structure-based Contrastive Learning (SCL) is designed with the Segment Anything Model (SAM) to improve prompt learning and anomaly segmentation results. Specifically, by treating SAM's masks as structure, we draw features within the same mask closer and push others apart for general feature representations. We conduct comprehensive experiments and set the benchmark on unsupervised continual anomaly detection and segmentation, demonstrating that our method is significantly better than anomaly detection methods, even with rehearsal training. The code will be available at https://github.com/shirowalker/UCAD.
Abstract:Image matching and object detection are two fundamental and challenging tasks, while many related applications consider them two individual tasks (i.e. task-individual). In this paper, a collaborative framework called MatchDet (i.e. task-collaborative) is proposed for image matching and object detection to obtain mutual improvements. To achieve the collaborative learning of the two tasks, we propose three novel modules, including a Weighted Spatial Attention Module (WSAM) for Detector, and Weighted Attention Module (WAM) and Box Filter for Matcher. Specifically, the WSAM highlights the foreground regions of target image to benefit the subsequent detector, the WAM enhances the connection between the foreground regions of pair images to ensure high-quality matches, and Box Filter mitigates the impact of false matches. We evaluate the approaches on a new benchmark with two datasets called Warp-COCO and miniScanNet. Experimental results show our approaches are effective and achieve competitive improvements.
Abstract:Large-scale well-annotated datasets are of great importance for training an effective object detector. However, obtaining accurate bounding box annotations is laborious and demanding. Unfortunately, the resultant noisy bounding boxes could cause corrupt supervision signals and thus diminish detection performance. Motivated by the observation that the real ground-truth is usually situated in the aggregation region of the proposals assigned to a noisy ground-truth, we propose DIStribution-aware CalibratiOn (DISCO) to model the spatial distribution of proposals for calibrating supervision signals. In DISCO, spatial distribution modeling is performed to statistically extract the potential locations of objects. Based on the modeled distribution, three distribution-aware techniques, i.e., distribution-aware proposal augmentation (DA-Aug), distribution-aware box refinement (DA-Ref), and distribution-aware confidence estimation (DA-Est), are developed to improve classification, localization, and interpretability, respectively. Extensive experiments on large-scale noisy image datasets (i.e., Pascal VOC and MS-COCO) demonstrate that DISCO can achieve state-of-the-art detection performance, especially at high noise levels.
Abstract:Weak feature representation problem has influenced the performance of few-shot classification task for a long time. To alleviate this problem, recent researchers build connections between support and query instances through embedding patch features to generate discriminative representations. However, we observe that there exists semantic mismatches (foreground/ background) among these local patches, because the location and size of the target object are not fixed. What is worse, these mismatches result in unreliable similarity confidences, and complex dense connection exacerbates the problem. According to this, we propose a novel Clustered-patch Element Connection (CEC) layer to correct the mismatch problem. The CEC layer leverages Patch Cluster and Element Connection operations to collect and establish reliable connections with high similarity patch features, respectively. Moreover, we propose a CECNet, including CEC layer based attention module and distance metric. The former is utilized to generate a more discriminative representation benefiting from the global clustered-patch features, and the latter is introduced to reliably measure the similarity between pair-features. Extensive experiments demonstrate that our CECNet outperforms the state-of-the-art methods on classification benchmark. Furthermore, our CEC approach can be extended into few-shot segmentation and detection tasks, which achieves competitive performances.
Abstract:Recent Few-Shot Learning (FSL) methods put emphasis on generating a discriminative embedding features to precisely measure the similarity between support and query sets. Current CNN-based cross-attention approaches generate discriminative representations via enhancing the mutually semantic similar regions of support and query pairs. However, it suffers from two problems: CNN structure produces inaccurate attention map based on local features, and mutually similar backgrounds cause distraction. To alleviate these problems, we design a novel SpatialFormer structure to generate more accurate attention regions based on global features. Different from the traditional Transformer modeling intrinsic instance-level similarity which causes accuracy degradation in FSL, our SpatialFormer explores the semantic-level similarity between pair inputs to boost the performance. Then we derive two specific attention modules, named SpatialFormer Semantic Attention (SFSA) and SpatialFormer Target Attention (SFTA), to enhance the target object regions while reduce the background distraction. Particularly, SFSA highlights the regions with same semantic information between pair features, and SFTA finds potential foreground object regions of novel feature that are similar to base categories. Extensive experiments show that our methods are effective and achieve new state-of-the-art results on few-shot classification benchmarks.