Abstract:Recognizing unseen skeleton action categories remains highly challenging due to the absence of corresponding skeletal priors. Existing approaches generally follow an "align-then-classify" paradigm but face two fundamental issues, i.e., (i) fragile point-to-point alignment arising from imperfect semantics, and (ii) rigid classifiers restricted by static decision boundaries and coarse-grained anchors. To address these issues, we propose a novel method for zero-shot skeleton action recognition, termed $\texttt{$\textbf{Flora}$}$, which builds upon $\textbf{F}$lexib$\textbf{L}$e neighb$\textbf{O}$r-aware semantic attunement and open-form dist$\textbf{R}$ibution-aware flow cl$\textbf{A}$ssifier. Specifically, we flexibly attune textual semantics by incorporating neighboring inter-class contextual cues to form direction-aware regional semantics, coupled with a cross-modal geometric consistency objective that ensures stable and robust point-to-region alignment. Furthermore, we employ noise-free flow matching to bridge the modality distribution gap between semantic and skeleton latent embeddings, while a condition-free contrastive regularization enhances discriminability, leading to a distribution-aware classifier with fine-grained decision boundaries achieved through token-level velocity predictions. Extensive experiments on three benchmark datasets validate the effectiveness of our method, showing particularly impressive performance even when trained with only 10\% of the seen data. Code is available at https://github.com/cseeyangchen/Flora.




Abstract:Vision-Language-Action (VLA) models have shown strong potential for general-purpose robotic manipulation, but their reliance on expert demonstrations limits their ability to learn from failures and perform self-corrections. Reinforcement learning (RL) addresses these through self-improving interactions with the physical environment, but suffers from high sample complexity on real robots. We introduce World-Model-based Policy Optimization (WMPO), a principled framework for on-policy VLA RL without interacting with the real environment. In contrast to widely used latent world models, WMPO focuses on pixel-based predictions that align the "imagined" trajectories with the VLA features pretrained with web-scale images. Crucially, WMPO enables the policy to perform on-policy GRPO that provides stronger performance than the often-used off-policy methods. Extensive experiments in both simulation and real-robot settings demonstrate that WMPO (i) substantially improves sample efficiency, (ii) achieves stronger overall performance, (iii) exhibits emergent behaviors such as self-correction, and (iv) demonstrates robust generalization and lifelong learning capabilities.
Abstract:Deep learning models such as MLP, Transformer, and TCN have achieved remarkable success in univariate time series forecasting, typically relying on sliding window samples from historical data for training. However, while these models implicitly compress historical information into their parameters during training, they are unable to explicitly and dynamically access this global knowledge during inference, relying only on the local context within the lookback window. This results in an underutilization of rich patterns from the global history. To bridge this gap, we propose Predicting the Future by Retrieving the Past (PFRP), a novel approach that explicitly integrates global historical data to enhance forecasting accuracy. Specifically, we construct a Global Memory Bank (GMB) to effectively store and manage global historical patterns. A retrieval mechanism is then employed to extract similar patterns from the GMB, enabling the generation of global predictions. By adaptively combining these global predictions with the outputs of any local prediction model, PFRP produces more accurate and interpretable forecasts. Extensive experiments conducted on seven real-world datasets demonstrate that PFRP significantly enhances the average performance of advanced univariate forecasting models by 8.4\%. Codes can be found in https://github.com/ddz16/PFRP.
Abstract:Despite the significant breakthrough of Mixture-of-Experts (MoE), the increasing scale of these MoE models presents huge memory and storage challenges. Existing MoE pruning methods, which involve reducing parameter size with a uniform sparsity across all layers, often lead to suboptimal outcomes and performance degradation due to varying expert redundancy in different MoE layers. To address this, we propose a non-uniform pruning strategy, dubbed \textbf{Di}fferentiable \textbf{E}xpert \textbf{P}runing (\textbf{DiEP}), which adaptively adjusts pruning rates at the layer level while jointly learning inter-layer importance, effectively capturing the varying redundancy across different MoE layers. By transforming the global discrete search space into a continuous one, our method handles exponentially growing non-uniform expert combinations, enabling adaptive gradient-based pruning. Extensive experiments on five advanced MoE models demonstrate the efficacy of our method across various NLP tasks. Notably, \textbf{DiEP} retains around 92\% of original performance on Mixtral 8$\times$7B with only half the experts, outperforming other pruning methods by up to 7.1\% on the challenging MMLU dataset.
Abstract:With the breakthrough progress of large language models (LLMs) in natural language processing and multimodal tasks, efficiently deploying them on resource-constrained edge devices has become a critical challenge. The Mixture of Experts (MoE) architecture enhances model capacity through sparse activation, but faces two major difficulties in practical deployment: (1) The presence of numerous outliers in activation distributions leads to severe degradation in quantization accuracy for both activations and weights, significantly impairing inference performance; (2) Under limited memory, efficient offloading and collaborative inference of expert modules struggle to balance latency and throughput. To address these issues, this paper proposes an efficient MoE edge deployment scheme based on Hessian-Aware Quantization (HAQ) and CPU-GPU collaborative inference. First, by introducing smoothed Hessian matrix quantization, we achieve joint 8-bit quantization of activations and weights, which significantly alleviates the accuracy loss caused by outliers while ensuring efficient implementation on mainstream hardware. Second, we design an expert-level collaborative offloading and inference mechanism, which, combined with expert activation path statistics, enables efficient deployment and scheduling of expert modules between CPU and GPU, greatly reducing memory footprint and inference latency. Extensive experiments validate the effectiveness of our method on mainstream large models such as the OPT series and Mixtral 8*7B: on datasets like Wikitext2 and C4, the inference accuracy of the low-bit quantized model approaches that of the full-precision model, while GPU memory usage is reduced by about 60%, and inference latency is significantly improved.
Abstract:Large reasoning models (LRMs) have demonstrated impressive capabilities in domains like mathematics and program synthesis. Despite their strong performance, LRMs often exhibit overthinking -- excessive and redundant reasoning steps that introduce inefficiencies during inference. This phenomenon raises an important question for LRM self-evaluation: How can a model autonomously assess the correctness of its own reasoning trajectory without external labels? To address this, we propose Chain-of-Reasoning Embedding (CoRE), a series of hidden states in latent space to enable label-free self-evaluation on intermediate reasoning steps of LRMs, so as to enhance metacognition abilities for improved reasoning efficiency. By analyzing the geometric properties of the CoRE trajectories, we reveal that redundant reasoning usually presents cyclical fluctuations, which correspond to repetitive and unconscious reflection/exploration. Leveraging this insight, we further introduce a training-free, label-free self-evaluation framework, CoRE-Eval, to detect such patterns and dynamically determine whether to terminate reasoning early. Extensive experiments on mathematical reasoning benchmarks (GSM8K, MATH-500, and AIME) and across model sizes from 7B to 32B demonstrate that CoRE-Eval reduces chain-of-thought length by 13.7% to 33.2% while improving answer accuracy by around 10%, achieving 70.0% accuracy on the challenging AIME benchmark with the 32B model.
Abstract:Recent Long Reasoning Models(LRMs) have demonstrated remarkable capabilities in handling complex reasoning tasks, but are hindered by excessive overthinking. To explore its essence, our empirical analysis reveals that LRMs are primarily limited to recognizing task properties (i.e., difficulty levels) like humans before solving the problem, leading to a one-size-fits-all reasoning process. Inspired by this, a pressing and natural question emerges: Can we bootstrap such ability to further alleviate the overthinking phenomenon in LRMs? In this paper, we propose Think-How-to-Think (TH2T), a novel two-stage fine-tuning strategy that progressively inspires LRMs' difficulty cognition and redundancy cognition. First, we introduce difficulty-hypnosis in the prefixes of model outputs to intervene in the internal reasoning trajectory. Combined with a heterogeneous short and long reasoning dataset, the trained model enhances its sensitivity to task difficulty, enabling native, differentiated reasoning strategies across various tasks. Second, we further extend redundancy-hypnosis to the internal reasoning process, guiding the model to identify redundant structures within the reasoning steps and generate more concise reasoning outputs. Experiments on 7B/14B/32B models demonstrate that TH2T significantly reduces inference costs (more than 70% on easy tasks and 40% on hard tasks) while maintaining performance stability. The resulting outputs exhibit clear difficulty-aware capabilities and reduced redundancy (e.g., reflection).
Abstract:Large Language Models (LLMs) exhibit a notable performance ceiling on complex, multi-faceted tasks, as they often fail to integrate diverse information or adhere to multiple constraints. We posit that such limitation arises when the demands of a task exceed the LLM's effective cognitive load capacity. This interpretation draws a strong analogy to Cognitive Load Theory (CLT) in cognitive science, which explains similar performance boundaries in the human mind, and is further supported by emerging evidence that reveals LLMs have bounded working memory characteristics. Building upon this CLT-grounded understanding, we introduce CoThinker, a novel LLM-based multi-agent framework designed to mitigate cognitive overload and enhance collaborative problem-solving abilities. CoThinker operationalizes CLT principles by distributing intrinsic cognitive load through agent specialization and managing transactional load via structured communication and a collective working memory. We empirically validate CoThinker on complex problem-solving tasks and fabricated high cognitive load scenarios, demonstrating improvements over existing multi-agent baselines in solution quality and efficiency. Our analysis reveals characteristic interaction patterns, providing insights into the emergence of collective cognition and effective load management, thus offering a principled approach to overcoming LLM performance ceilings.




Abstract:Existing pretrained models for 3D mesh generation often suffer from data biases and produce low-quality results, while global reinforcement learning (RL) methods rely on object-level rewards that struggle to capture local structure details. To address these challenges, we present \textbf{Mesh-RFT}, a novel fine-grained reinforcement fine-tuning framework that employs Masked Direct Preference Optimization (M-DPO) to enable localized refinement via quality-aware face masking. To facilitate efficient quality evaluation, we introduce an objective topology-aware scoring system to evaluate geometric integrity and topological regularity at both object and face levels through two metrics: Boundary Edge Ratio (BER) and Topology Score (TS). By integrating these metrics into a fine-grained RL strategy, Mesh-RFT becomes the first method to optimize mesh quality at the granularity of individual faces, resolving localized errors while preserving global coherence. Experiment results show that our M-DPO approach reduces Hausdorff Distance (HD) by 24.6\% and improves Topology Score (TS) by 3.8\% over pre-trained models, while outperforming global DPO methods with a 17.4\% HD reduction and 4.9\% TS gain. These results demonstrate Mesh-RFT's ability to improve geometric integrity and topological regularity, achieving new state-of-the-art performance in production-ready mesh generation. Project Page: \href{https://hitcslj.github.io/mesh-rft/}{this https URL}.




Abstract:The next-coordinate prediction paradigm has emerged as the de facto standard in current auto-regressive mesh generation methods. Despite their effectiveness, there is no efficient measurement for the various tokenizers that serialize meshes into sequences. In this paper, we introduce a new metric Per-Token-Mesh-Entropy (PTME) to evaluate the existing mesh tokenizers theoretically without any training. Building upon PTME, we propose a plug-and-play tokenization technique called coordinate merging. It further improves the compression ratios of existing tokenizers by rearranging and merging the most frequent patterns of coordinates. Through experiments on various tokenization methods like MeshXL, MeshAnything V2, and Edgerunner, we further validate the performance of our method. We hope that the proposed PTME and coordinate merging can enhance the existing mesh tokenizers and guide the further development of native mesh generation.