Abstract:Adversarial Training (AT) is one of the most effective methods to enhance the robustness of DNNs. However, existing AT methods suffer from an inherent trade-off between adversarial robustness and clean accuracy, which seriously hinders their real-world deployment. While this problem has been widely studied within the current AT paradigm, existing AT methods still typically experience a reduction in clean accuracy by over 10% to date, without significant improvements in robustness compared with simple baselines like PGD-AT. This inherent trade-off raises a question: whether the current AT paradigm, which assumes to learn the corresponding benign and adversarial samples as the same class, inappropriately combines clean and robust objectives that may be essentially inconsistent. In this work, we surprisingly reveal that up to 40% of CIFAR-10 adversarial samples always fail to satisfy such an assumption across various AT methods and robust models, explicitly indicating the improvement room for the current AT paradigm. Accordingly, to relax the tension between clean and robust learning derived from this overstrict assumption, we propose a new AT paradigm by introducing an additional dummy class for each original class, aiming to accommodate the hard adversarial samples with shifted distribution after perturbation. The robustness w.r.t. these adversarial samples can be achieved by runtime recovery from the predicted dummy classes to their corresponding original ones, eliminating the compromise with clean learning. Building on this new paradigm, we propose a novel plug-and-play AT technology named DUmmy Classes-based Adversarial Training (DUCAT). Extensive experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that the DUCAT concurrently improves clean accuracy and adversarial robustness compared with state-of-the-art benchmarks, effectively breaking the existing inherent trade-off.
Abstract:Model extraction attacks (MEAs) on large language models (LLMs) have received increasing research attention lately. Existing attack methods on LLMs inherit the extraction strategies from those designed for deep neural networks (DNNs) yet neglect the inconsistency of training tasks between MEA and LLMs' alignments. As such, they result in poor attack performances. To tackle this issue, we present Locality Reinforced Distillation (LoRD), a novel model extraction attack algorithm specifically for LLMs. In particular, we design a policy-gradient-style training task, which utilizes victim models' responses as a signal to guide the crafting of preference for the local model. Theoretical analysis has shown that i) LoRD's convergence procedure in MEAs is consistent with the alignments of LLMs, and ii) LoRD can reduce query complexity while mitigating watermark protection through exploration-based stealing. Extensive experiments on domain-specific extractions demonstrate the superiority of our method by examining the extraction of various state-of-the-art commercial LLMs.
Abstract:The drastic increase of large language models' (LLMs) parameters has led to a new research direction of fine-tuning-free downstream customization by prompts, i.e., task descriptions. While these prompt-based services (e.g. OpenAI's GPTs) play an important role in many businesses, there has emerged growing concerns about the prompt leakage, which undermines the intellectual properties of these services and causes downstream attacks. In this paper, we analyze the underlying mechanism of prompt leakage, which we refer to as prompt memorization, and develop corresponding defending strategies. By exploring the scaling laws in prompt extraction, we analyze key attributes that influence prompt extraction, including model sizes, prompt lengths, as well as the types of prompts. Then we propose two hypotheses that explain how LLMs expose their prompts. The first is attributed to the perplexity, i.e. the familiarity of LLMs to texts, whereas the second is based on the straightforward token translation path in attention matrices. To defend against such threats, we investigate whether alignments can undermine the extraction of prompts. We find that current LLMs, even those with safety alignments like GPT-4, are highly vulnerable to prompt extraction attacks, even under the most straightforward user attacks. Therefore, we put forward several defense strategies with the inspiration of our findings, which achieve 83.8\% and 71.0\% drop in the prompt extraction rate for Llama2-7B and GPT-3.5, respectively. Source code is avaliable at \url{https://github.com/liangzid/PromptExtractionEval}.
Abstract:Recent years have seen increasing concerns about the private inference of NLP services and Transformer models. However, existing two-party privacy-preserving methods solely consider NLU scenarios, while the private inference of text generation such as translation, dialogue, and code completion remains unsolved. Besides, while migrated to NLG models, existing privacy-preserving methods perform poorly in terms of inference speed, and suffer from the convergence problem during the training stage. To address these issues, we propose MERGE, a fast private text generation framework for Transformer-based language models. Specifically, MERGE reuse the output hidden state as the word embedding to bypass the embedding computation, and reorganize the linear operations in the Transformer module to accelerate the forward procedure. Based on these two optimizations, extensive experiments show that MERGE can achieve a 26.5x speedup under the sequence length 512, and reduce 80\% communication bytes, with an up to 10x speedup to existing state-of-art models.
Abstract:Recent years have seen increasing concerns about the unsafe response generation of large-scale dialogue systems, where agents will learn offensive or biased behaviors from the real-world corpus. Some methods are proposed to address the above issue by detecting and replacing unsafe training examples in a pipeline style. Though effective, they suffer from a high annotation cost and adapt poorly to unseen scenarios as well as adversarial attacks. Besides, the neglect of providing safe responses (e.g. simply replacing with templates) will cause the information-missing problem of dialogues. To address these issues, we propose an unsupervised pseudo-label sampling method, TEMP, that can automatically assign potential safe responses. Specifically, our TEMP method groups responses into several clusters and samples multiple labels with an adaptively sharpened sampling strategy, inspired by the observation that unsafe samples in the clusters are usually few and distribute in the tail. Extensive experiments in chitchat and task-oriented dialogues show that our TEMP outperforms state-of-the-art models with weak supervision signals and obtains comparable results under unsupervised learning settings.
Abstract:Multi-action dialog policy, which generates multiple atomic dialog actions per turn, has been widely applied in task-oriented dialog systems to provide expressive and efficient system responses. Existing policy models usually imitate action combinations from the labeled multi-action dialog examples. Due to data limitations, they generalize poorly toward unseen dialog flows. While reinforcement learning-based methods are proposed to incorporate the service ratings from real users and user simulators as external supervision signals, they suffer from sparse and less credible dialog-level rewards. To cope with this problem, we explore to improve multi-action dialog policy learning with explicit and implicit turn-level user feedback received for historical predictions (i.e., logged user feedback) that are cost-efficient to collect and faithful to real-world scenarios. The task is challenging since the logged user feedback provides only partial label feedback limited to the particular historical dialog actions predicted by the agent. To fully exploit such feedback information, we propose BanditMatch, which addresses the task from a feedback-enhanced semi-supervised learning perspective with a hybrid objective of semi-supervised learning and bandit learning. BanditMatch integrates pseudo-labeling methods to better explore the action space through constructing full label feedback. Extensive experiments show that our BanditMatch outperforms the state-of-the-art methods by generating more concise and informative responses. The source code and the appendix of this paper can be obtained from https://github.com/ShuoZhangXJTU/BanditMatch.