Abstract:Ontologies are essential for structuring domain knowledge, improving accessibility, sharing, and reuse. However, traditional ontology construction relies on manual annotation and conventional natural language processing (NLP) techniques, making the process labour-intensive and costly, especially in specialised fields like casting manufacturing. The rise of Large Language Models (LLMs) offers new possibilities for automating knowledge extraction. This study investigates three LLM-based approaches, including pre-trained LLM-driven method, in-context learning (ICL) method and fine-tuning method to extract terms and relations from domain-specific texts using limited data. We compare their performances and use the best-performing method to build a casting ontology that validated by domian expert.
Abstract:Large language models (LLMs) are increasingly used as simulated participants in social science experiments, but their behavior is often unstable and highly sensitive to design choices. Prior evaluations frequently conflate base-model capabilities with experimental instantiation, obscuring whether outcomes reflect the model itself or the agent setup. We instead frame participant simulation as an agent-design problem over full experimental protocols, where an agent is defined by a base model and a specification (e.g., participant attributes) that encodes behavioral assumptions. We introduce HUMANSTUDY-BENCH, a benchmark and execution engine that orchestrates LLM-based agents to reconstruct published human-subject experiments via a Filter--Extract--Execute--Evaluate pipeline, replaying trial sequences and running the original analysis pipeline in a shared runtime that preserves the original statistical procedures end to end. To evaluate fidelity at the level of scientific inference, we propose new metrics to quantify how much human and agent behaviors agree. We instantiate 12 foundational studies as an initial suite in this dynamic benchmark, spanning individual cognition, strategic interaction, and social psychology, and covering more than 6,000 trials with human samples ranging from tens to over 2,100 participants.
Abstract:LLM-based web agents have become increasingly popular for their utility in daily life and work. However, they exhibit critical vulnerabilities when processing malicious URLs: accepting a disguised malicious URL enables subsequent access to unsafe webpages, which can cause severe damage to service providers and users. Despite this risk, no benchmark currently targets this emerging threat. To address this gap, we propose MalURLBench, the first benchmark for evaluating LLMs' vulnerabilities to malicious URLs. MalURLBench contains 61,845 attack instances spanning 10 real-world scenarios and 7 categories of real malicious websites. Experiments with 12 popular LLMs reveal that existing models struggle to detect elaborately disguised malicious URLs. We further identify and analyze key factors that impact attack success rates and propose URLGuard, a lightweight defense module. We believe this work will provide a foundational resource for advancing the security of web agents. Our code is available at https://github.com/JiangYingEr/MalURLBench.
Abstract:This paper introduces PRA, an AI-agent design for simulating how individual users form privacy concerns in response to real-world news. Moving beyond population-level sentiment analysis, PRA integrates privacy and cognitive theories to simulate user-specific privacy reasoning grounded in personal comment histories and contextual cues. The agent reconstructs each user's "privacy mind", dynamically activates relevant privacy memory through a contextual filter that emulates bounded rationality, and generates synthetic comments reflecting how that user would likely respond to new privacy scenarios. A complementary LLM-as-a-Judge evaluator, calibrated against an established privacy concern taxonomy, quantifies the faithfulness of generated reasoning. Experiments on real-world Hacker News discussions show that \PRA outperforms baseline agents in privacy concern prediction and captures transferable reasoning patterns across domains including AI, e-commerce, and healthcare.
Abstract:In medicine, large language models (LLMs) increasingly rely on retrieval-augmented generation (RAG) to ground outputs in up-to-date external evidence. However, current RAG approaches focus primarily on performance improvements while overlooking evidence-based medicine (EBM) principles. This study addresses two key gaps: (1) the lack of PICO alignment between queries and retrieved evidence, and (2) the absence of evidence hierarchy considerations during reranking. We present a generalizable strategy for adapting EBM to graph-based RAG, integrating the PICO framework into knowledge graph construction and retrieval, and proposing a Bayesian-inspired reranking algorithm to calibrate ranking scores by evidence grade without introducing predefined weights. We validated this framework in sports rehabilitation, a literature-rich domain currently lacking RAG systems and benchmarks. We released a knowledge graph (357,844 nodes and 371,226 edges) and a reusable benchmark of 1,637 QA pairs. The system achieved 0.830 nugget coverage, 0.819 answer faithfulness, 0.882 semantic similarity, and 0.788 PICOT match accuracy. In a 5-point Likert evaluation, five expert clinicians rated the system 4.66-4.84 across factual accuracy, faithfulness, relevance, safety, and PICO alignment. These findings demonstrate that the proposed EBM adaptation strategy improves retrieval and answer quality and is transferable to other clinical domains. The released resources also help address the scarcity of RAG datasets in sports rehabilitation.
Abstract:Recent advances in image understanding have enabled methods that leverage large language models for multimodal reasoning in remote sensing. However, existing approaches still struggle to steer models to the user-relevant regions when only simple, generic text prompts are available. Moreover, in large-scale aerial imagery many objects exhibit highly similar visual appearances and carry rich inter-object relationships, which further complicates accurate recognition. To address these challenges, we propose Cross-modal Context-aware Learning for Visual Prompt-Guided Multimodal Image Understanding (CLV-Net). CLV-Net lets users supply a simple visual cue, a bounding box, to indicate a region of interest, and uses that cue to guide the model to generate correlated segmentation masks and captions that faithfully reflect user intent. Central to our design is a Context-Aware Mask Decoder that models and integrates inter-object relationships to strengthen target representations and improve mask quality. In addition, we introduce a Semantic and Relationship Alignment module: a Cross-modal Semantic Consistency Loss enhances fine-grained discrimination among visually similar targets, while a Relationship Consistency Loss enforces alignment between textual relations and visual interactions. Comprehensive experiments on two benchmark datasets show that CLV-Net outperforms existing methods and establishes new state-of-the-art results. The model effectively captures user intent and produces precise, intention-aligned multimodal outputs.
Abstract:Federated Learning (FL) preserves privacy by keeping raw data local, yet Gradient Inversion Attacks (GIAs) pose significant threats. In FedAVG multi-step scenarios, attackers observe only aggregated gradients, making data reconstruction challenging. Existing surrogate model methods like SME assume linear parameter trajectories, but we demonstrate this severely underestimates SGD's nonlinear complexity, fundamentally limiting attack effectiveness. We propose Non-Linear Surrogate Model Extension (NL-SME), the first method to introduce nonlinear parametric trajectory modeling for GIAs. Our approach replaces linear interpolation with learnable quadratic B\'ezier curves that capture SGD's curved characteristics through control points, combined with regularization and dvec scaling mechanisms for enhanced expressiveness. Extensive experiments on CIFAR-100 and FEMNIST datasets show NL-SME significantly outperforms baselines across all metrics, achieving order-of-magnitude improvements in cosine similarity loss while maintaining computational efficiency.This work exposes heightened privacy vulnerabilities in FL's multi-step update paradigm and offers novel perspectives for developing robust defense strategies.
Abstract:Large Language Models (LLMs) exhibit a notable performance ceiling on complex, multi-faceted tasks, as they often fail to integrate diverse information or adhere to multiple constraints. We posit that such limitation arises when the demands of a task exceed the LLM's effective cognitive load capacity. This interpretation draws a strong analogy to Cognitive Load Theory (CLT) in cognitive science, which explains similar performance boundaries in the human mind, and is further supported by emerging evidence that reveals LLMs have bounded working memory characteristics. Building upon this CLT-grounded understanding, we introduce CoThinker, a novel LLM-based multi-agent framework designed to mitigate cognitive overload and enhance collaborative problem-solving abilities. CoThinker operationalizes CLT principles by distributing intrinsic cognitive load through agent specialization and managing transactional load via structured communication and a collective working memory. We empirically validate CoThinker on complex problem-solving tasks and fabricated high cognitive load scenarios, demonstrating improvements over existing multi-agent baselines in solution quality and efficiency. Our analysis reveals characteristic interaction patterns, providing insights into the emergence of collective cognition and effective load management, thus offering a principled approach to overcoming LLM performance ceilings.
Abstract:Understanding accurate atomic temporal event is essential for video comprehension. However, current video-language benchmarks often fall short to evaluate Large Multi-modal Models' (LMMs) temporal event understanding capabilities, as they can be effectively addressed using image-language models. In this paper, we introduce RTime-QA, a novel benchmark specifically designed to assess the atomic temporal event understanding ability of LMMs. RTime-QA comprises 822 high-quality, carefully-curated video-text questions, each meticulously annotated by human experts. Each question features a video depicting an atomic temporal event, paired with both correct answers and temporal negative descriptions, specifically designed to evaluate temporal understanding. To advance LMMs' temporal event understanding ability, we further introduce RTime-IT, a 14k instruction-tuning dataset that employs a similar annotation process as RTime-QA. Extensive experimental analysis demonstrates that RTime-QA presents a significant challenge for LMMs: the state-of-the-art model Qwen2-VL achieves only 34.6 on strict-ACC metric, substantially lagging behind human performance. Furthermore, our experiments reveal that RTime-IT effectively enhance LMMs' capacity in temporal understanding. By fine-tuning on RTime-IT, our Qwen2-VL achieves 65.9 on RTime-QA.
Abstract:Rectified flow models have achieved remarkable performance in image and video generation tasks. However, existing numerical solvers face a trade-off between fast sampling and high-accuracy solutions, limiting their effectiveness in downstream applications such as reconstruction and editing. To address this challenge, we propose leveraging the Adams-Bashforth-Moulton (ABM) predictor-corrector method to enhance the accuracy of ODE solving in rectified flow models. Specifically, we introduce ABM-Solver, which integrates a multi step predictor corrector approach to reduce local truncation errors and employs Adaptive Step Size Adjustment to improve sampling speed. Furthermore, to effectively preserve non edited regions while facilitating semantic modifications, we introduce a Mask Guided Feature Injection module. We estimate self-similarity to generate a spatial mask that differentiates preserved regions from those available for editing. Extensive experiments on multiple high-resolution image datasets validate that ABM-Solver significantly improves inversion precision and editing quality, outperforming existing solvers without requiring additional training or optimization.