Abstract:Low-cost inertial measurement units (IMUs) are widely utilized in mobile robot localization due to their affordability and ease of integration. However, their complex, nonlinear, and time-varying noise characteristics often lead to significant degradation in localization accuracy when applied directly for dead reckoning. To overcome this limitation, we propose a novel brain-inspired state estimation framework that combines a spiking neural network (SNN) with an invariant extended Kalman filter (InEKF). The SNN is designed to extract motion-related features from long sequences of IMU data affected by substantial random noise and is trained via a surrogate gradient descent algorithm to enable dynamic adaptation of the covariance noise parameter within the InEKF. By fusing the SNN output with raw IMU measurements, the proposed method enhances the robustness and accuracy of pose estimation. Extensive experiments conducted on the KITTI dataset and real-world data collected using a mobile robot equipped with a low-cost IMU demonstrate that the proposed approach outperforms state-of-the-art methods in localization accuracy and exhibits strong robustness to sensor noise, highlighting its potential for real-world mobile robot applications.
Abstract:Low-cost inertial navigation systems (INS) are prone to sensor biases and measurement noise, which lead to rapid degradation of navigation accuracy during global positioning system (GPS) outages. To address this challenge and improve positioning continuity in GPS-denied environments, this paper proposes a brain-inspired GPS/INS fusion network (BGFN) based on spiking neural networks (SNNs). The BGFN architecture integrates a spiking Transformer with a spiking encoder to simultaneously extract spatial features from inertial measurement unit (IMU) signals and capture their temporal dynamics. By modeling the relationship between vehicle attitude, specific force, angular rate, and GPS-derived position increments, the network leverages both current and historical IMU data to estimate vehicle motion. The effectiveness of the proposed method is evaluated through real-world field tests and experiments on public datasets. Compared to conventional deep learning approaches, the results demonstrate that BGFN achieves higher accuracy and enhanced reliability in navigation performance, particularly under prolonged GPS outages.
Abstract:The transition from hand-crafted heuristics to data-driven evolutionary algorithms faces a fundamental dilemma: achieving neural plasticity without sacrificing mathematical stability. Emerging learned optimizers demonstrate high adaptability. However, they often lack rigorous convergence guarantees. This deficiency results in unpredictable behaviors on unseen landscapes. To address this challenge, we introduce Learning to Evolve (L2E), a unified bilevel meta-optimization framework. This method reformulates evolutionary search as a Neural Unrolling process grounded in Krasnosel'skii-Mann (KM) fixed-point theory. First, L2E models a coupled dynamic system in which the inner loop enforces a strict contractive trajectory via a structured Mamba-based neural operator. Second, the outer loop optimizes meta-parameters to align the fixed point of the operator with the target objective minimizers. Third, we design a gradient-derived composite solver that adaptively fuses learned evolutionary proposals with proxy gradient steps, thereby harmonizing global exploration with local refinement. Crucially, this formulation provides the learned optimizer with provable convergence guarantees. Extensive experiments demonstrate the scalability of L2E in high-dimensional spaces and its robust zero-shot generalization across synthetic and real-world control tasks. These results confirm that the framework learns a generic optimization manifold that extends beyond specific training distributions.
Abstract:Vision and Language Navigation (VLN) requires an agent to navigate through environments following natural language instructions. However, existing methods often struggle with effectively integrating visual observations and instruction details during navigation, leading to suboptimal path planning and limited success rates. In this paper, we propose OIKG (Observation-graph Interaction and Key-detail Guidance), a novel framework that addresses these limitations through two key components: (1) an observation-graph interaction module that decouples angular and visual information while strengthening edge representations in the navigation space, and (2) a key-detail guidance module that dynamically extracts and utilizes fine-grained location and object information from instructions. By enabling more precise cross-modal alignment and dynamic instruction interpretation, our approach significantly improves the agent's ability to follow complex navigation instructions. Extensive experiments on the R2R and RxR datasets demonstrate that OIKG achieves state-of-the-art performance across multiple evaluation metrics, validating the effectiveness of our method in enhancing navigation precision through better observation-instruction alignment.




Abstract:Transfer attacks generate significant interest for real-world black-box applications by crafting transferable adversarial examples through surrogate models. Whereas, existing works essentially directly optimize the single-level objective w.r.t. the surrogate model, which always leads to poor interpretability of attack mechanism and limited generalization performance over unknown victim models. In this work, we propose the \textbf{B}il\textbf{E}vel \textbf{T}ransfer \textbf{A}ttac\textbf{K} (BETAK) framework by establishing an initialization derived bilevel optimization paradigm, which explicitly reformulates the nested constraint relationship between the Upper-Level (UL) pseudo-victim attacker and the Lower-Level (LL) surrogate attacker. Algorithmically, we introduce the Hyper Gradient Response (HGR) estimation as an effective feedback for the transferability over pseudo-victim attackers, and propose the Dynamic Sequence Truncation (DST) technique to dynamically adjust the back-propagation path for HGR and reduce computational overhead simultaneously. Meanwhile, we conduct detailed algorithmic analysis and provide convergence guarantee to support non-convexity of the LL surrogate attacker. Extensive evaluations demonstrate substantial improvement of BETAK (e.g., $\mathbf{53.41}$\% increase of attack success rates against IncRes-v$2_{ens}$) against different victims and defense methods in targeted and untargeted attack scenarios. The source code is available at https://github.com/callous-youth/BETAK.




Abstract:In light of the vulnerability of deep learning models to adversarial samples and the ensuing security issues, a range of methods, including Adversarial Training (AT) as a prominent representative, aimed at enhancing model robustness against various adversarial attacks, have seen rapid development. However, existing methods essentially assist the current state of target model to defend against parameter-oriented adversarial attacks with explicit or implicit computation burdens, which also suffers from unstable convergence behavior due to inconsistency of optimization trajectories. Diverging from previous work, this paper reconsiders the update rule of target model and corresponding deficiency to defend based on its current state. By introducing the historical state of the target model as a proxy, which is endowed with much prior information for defense, we formulate a two-stage update rule, resulting in a general adversarial defense framework, which we refer to as `LAST' ({\bf L}earn from the P{\bf ast}). Besides, we devise a Self Distillation (SD) based defense objective to constrain the update process of the proxy model without the introduction of larger teacher models. Experimentally, we demonstrate consistent and significant performance enhancements by refining a series of single-step and multi-step AT methods (e.g., up to $\bf 9.2\%$ and $\bf 20.5\%$ improvement of Robust Accuracy (RA) on CIFAR10 and CIFAR100 datasets, respectively) across various datasets, backbones and attack modalities, and validate its ability to enhance training stability and ameliorate catastrophic overfitting issues meanwhile.




Abstract:Super-resolution tasks oriented to images captured in ultra-dark environments is a practical yet challenging problem that has received little attention. Due to uneven illumination and low signal-to-noise ratio in dark environments, a multitude of problems such as lack of detail and color distortion may be magnified in the super-resolution process compared to normal-lighting environments. Consequently, conventional low-light enhancement or super-resolution methods, whether applied individually or in a cascaded manner for such problem, often encounter limitations in recovering luminance, color fidelity, and intricate details. To conquer these issues, this paper proposes a specialized dual-modulated learning framework that, for the first time, attempts to deeply dissect the nature of the low-light super-resolution task. Leveraging natural image color characteristics, we introduce a self-regularized luminance constraint as a prior for addressing uneven lighting. Expanding on this, we develop Illuminance-Semantic Dual Modulation (ISDM) components to enhance feature-level preservation of illumination and color details. Besides, instead of deploying naive up-sampling strategies, we design the Resolution-Sensitive Merging Up-sampler (RSMU) module that brings together different sampling modalities as substrates, effectively mitigating the presence of artifacts and halos. Comprehensive experiments showcases the applicability and generalizability of our approach to diverse and challenging ultra-low-light conditions, outperforming state-of-the-art methods with a notable improvement (i.e., $\uparrow$5\% in PSNR, and $\uparrow$43\% in LPIPS). Especially noteworthy is the 19-fold increase in the RMSE score, underscoring our method's exceptional generalization across different darkness levels. The code will be available online upon publication of the paper.




Abstract:In light of the significant progress made in the development and application of semantic segmentation tasks, there has been increasing attention towards improving the robustness of segmentation models against natural degradation factors (e.g., rain streaks) or artificially attack factors (e.g., adversarial attack). Whereas, most existing methods are designed to address a single degradation factor and are tailored to specific application scenarios. In this work, we present the first attempt to improve the robustness of semantic segmentation tasks by simultaneously handling different types of degradation factors. Specifically, we introduce the Preprocessing Enhanced Adversarial Robust Learning (PEARL) framework based on the analysis of our proposed Naive Adversarial Training (NAT) framework. Our approach effectively handles both rain streaks and adversarial perturbation by transferring the robustness of the segmentation model to the image derain model. Furthermore, as opposed to the commonly used Negative Adversarial Attack (NAA), we design the Auxiliary Mirror Attack (AMA) to introduce positive information prior to the training of the PEARL framework, which improves defense capability and segmentation performance. Our extensive experiments and ablation studies based on different derain methods and segmentation models have demonstrated the significant performance improvement of PEARL with AMA in defense against various adversarial attacks and rain streaks while maintaining high generalization performance across different datasets.
Abstract:Gradient methods have become mainstream techniques for Bi-Level Optimization (BLO) in learning fields. The validity of existing works heavily rely on either a restrictive Lower- Level Strong Convexity (LLSC) condition or on solving a series of approximation subproblems with high accuracy or both. In this work, by averaging the upper and lower level objectives, we propose a single loop Bi-level Averaged Method of Multipliers (sl-BAMM) for BLO that is simple yet efficient for large-scale BLO and gets rid of the limited LLSC restriction. We further provide non-asymptotic convergence analysis of sl-BAMM towards KKT stationary points, and the comparative advantage of our analysis lies in the absence of strong gradient boundedness assumption, which is always required by others. Thus our theory safely captures a wider variety of applications in deep learning, especially where the upper-level objective is quadratic w.r.t. the lower-level variable. Experimental results demonstrate the superiority of our method.




Abstract:High order structures (cavities and cliques) of the gene network of influenza A virus reveal tight associations among viruses during evolution and are key signals that indicate viral cross-species infection and cause pandemics. As indicators for sensing the dynamic changes of viral genes, these higher order structures have been the focus of attention in the field of virology. However, the size of the viral gene network is usually huge, and searching these structures in the networks introduces unacceptable delay. To mitigate this issue, in this paper, we propose a simple-yet-effective model named HyperSearch based on deep learning to search cavities in a computable complex network for influenza virus genetics. Extensive experiments conducted on a public influenza virus dataset demonstrate the effectiveness of HyperSearch over other advanced deep-learning methods without any elaborated model crafting. Moreover, HyperSearch can finish the search works in minutes while 0-1 programming takes days. Since the proposed method is simple and easy to be transferred to other complex networks, HyperSearch has the potential to facilitate the monitoring of dynamic changes in viral genes and help humans keep up with the pace of virus mutations.