Abstract:Aerial manipulators, composed of multirotors and robotic arms, have a structure and function highly reminiscent of avian species. This paper studies the tracking control problem for aerial manipulators. This paper studies the tracking control problem for aerial manipulators. We propose an avian-inspired aerial manipulation system, which includes an avian-inspired robotic arm design, a Recursive Newton-Euler (RNE) method-based nonlinear flight controller, and a coordinated controller with two modes. Compared to existing methods, our proposed approach offers several attractive features. First, the morphological characteristics of avian species are used to determine the size proportion of the multirotor and the robotic arm in the aerial manipulator. Second, the dynamic coupling of the aerial manipulator is addressed by the RNE-based flight controller and a dual-mode coordinated controller. Specifically, under our proposed algorithm, the aerial manipulator can stabilize the end-effector's pose, similar to avian head stabilization. The proposed approach is verified through three numerical experiments. The results show that even when the quadcopter is disturbed by different forces, the position error of the end-effector achieves millimeter-level accuracy, and the attitude error remains within 1 degree. The limitation of this work is not considering aggressive manipulation like that seen in birds. Addressing this through future studies that explore real-world experiments will be a key direction for research.
Abstract:This paper studies the motion planning problem of the pick-and-place of an aerial manipulator that consists of a quadcopter flying base and a Delta arm. We propose a novel partially decoupled motion planning framework to solve this problem. Compared to the state-of-the-art approaches, the proposed one has two novel features. First, it does not suffer from increased computation in high-dimensional configuration spaces. That is because it calculates the trajectories of the quadcopter base and the end-effector separately in the Cartesian space based on proposed geometric feasibility constraints. The geometric feasibility constraints can ensure the resulting trajectories satisfy the aerial manipulator's geometry. Second, collision avoidance for the Delta arm is achieved through an iterative approach based on a pinhole mapping method, so that the feasible trajectory can be found in an efficient manner. The proposed approach is verified by three experiments on a real aerial manipulation platform. The experimental results show the effectiveness of the proposed method for the aerial pick-and-place task.
Abstract:High order structures (cavities and cliques) of the gene network of influenza A virus reveal tight associations among viruses during evolution and are key signals that indicate viral cross-species infection and cause pandemics. As indicators for sensing the dynamic changes of viral genes, these higher order structures have been the focus of attention in the field of virology. However, the size of the viral gene network is usually huge, and searching these structures in the networks introduces unacceptable delay. To mitigate this issue, in this paper, we propose a simple-yet-effective model named HyperSearch based on deep learning to search cavities in a computable complex network for influenza virus genetics. Extensive experiments conducted on a public influenza virus dataset demonstrate the effectiveness of HyperSearch over other advanced deep-learning methods without any elaborated model crafting. Moreover, HyperSearch can finish the search works in minutes while 0-1 programming takes days. Since the proposed method is simple and easy to be transferred to other complex networks, HyperSearch has the potential to facilitate the monitoring of dynamic changes in viral genes and help humans keep up with the pace of virus mutations.
Abstract:This paper proposes a high-fidelity simulation framework that can estimate the potential safety benefits of vehicle-to-infrastructure (V2I) pedestrian safety strategies. This simulator can support cooperative perception algorithms in the loop by simulating the environmental conditions, traffic conditions, and pedestrian characteristics at the same time. Besides, the benefit estimation model applied in our framework can systematically quantify both the risk conflict (non-crash condition) and the severity of the pedestrian's injuries (crash condition). An experiment was conducted in this paper that built a digital twin of a crowded urban intersection in China. The result shows that our framework is efficient for safety benefit estimation of V2I pedestrian safety strategies.