Abstract:The softmax function is a cornerstone of multi-class classification, integral to a wide range of machine learning applications, from large-scale retrieval and ranking models to advanced large language models. However, its computational cost grows linearly with the number of classes, which becomes prohibitively expensive in scenarios with millions or even billions of classes. The sampled softmax, which relies on self-normalized importance sampling, has emerged as a powerful alternative, significantly reducing computational complexity. Yet, its estimator remains unbiased only when the sampling distribution matches the true softmax distribution. To improve both approximation accuracy and sampling efficiency, we propose the MIDX Sampler, a novel adaptive sampling strategy based on an inverted multi-index approach. Concretely, we decompose the softmax probability into several multinomial probabilities, each associated with a specific set of codewords and the last associated with the residual score of queries, thus reducing time complexity to the number of codewords instead of the number of classes. To further boost efficiency, we replace the query-specific residual probability with a simple uniform distribution, simplifying the computation while retaining high performance. Our method is backed by rigorous theoretical analysis, addressing key concerns such as sampling bias, gradient bias, convergence rates, and generalization error bounds. The results demonstrate that a smaller divergence from the ideal softmax distribution leads to faster convergence and improved generalization. Extensive experiments on large-scale language models, sequential recommenders, and extreme multi-class classification tasks confirm that the MIDX-Sampler delivers superior effectiveness and efficiency compared to existing approaches.
Abstract:Large Vision-Language Models (LVLMs) have recently demonstrated amazing success in multi-modal tasks, including advancements in Multi-modal Chain-of-Thought (MCoT) reasoning. Despite these successes, current benchmarks still follow a traditional paradigm with multi-modal input and text-modal output, which leads to significant drawbacks such as missing visual operations and vague expressions. Motivated by this, we introduce a novel Chain of Multi-modal Thought (CoMT) benchmark to address these limitations. Different from the traditional MCoT benchmark, CoMT requires both multi-modal input and multi-modal reasoning output, aiming to mimic human-like reasoning that inherently integrates visual operation. Specifically, CoMT consists of four categories: (1) Visual Creation, (2) Visual Deletion, (3) Visual Update, and (4) Visual Selection to comprehensively explore complex visual operations and concise expression in real scenarios. We evaluate various LVLMs and strategies on CoMT, revealing some key insights into the capabilities and limitations of the current approaches. We hope that CoMT can inspire more research on introducing multi-modal generation into the reasoning process.
Abstract:Large Language Models (LLMs) are commonly evaluated using human-crafted benchmarks, under the premise that higher scores implicitly reflect stronger human-like performance. However, there is growing concern that LLMs may ``game" these benchmarks due to data leakage, achieving high scores while struggling with tasks simple for humans. To substantively address the problem, we create GAOKAO-Eval, a comprehensive benchmark based on China's National College Entrance Examination (Gaokao), and conduct ``closed-book" evaluations for representative models released prior to Gaokao. Contrary to prevailing consensus, even after addressing data leakage and comprehensiveness, GAOKAO-Eval reveals that high scores still fail to truly reflect human-aligned capabilities. To better understand this mismatch, We introduce the Rasch model from cognitive psychology to analyze LLM scoring patterns and identify two key discrepancies: 1) anomalous consistent performance across various question difficulties, and 2) high variance in performance on questions of similar difficulty. In addition, We identified inconsistent grading of LLM-generated answers among teachers and recurring mistake patterns. we find that the phenomenons are well-grounded in the motivations behind OpenAI o1, and o1's reasoning-as-difficulties can mitigate the mismatch. These results show that GAOKAO-Eval can reveal limitations in LLM capabilities not captured by current benchmarks and highlight the need for more LLM-aligned difficulty analysis.
Abstract:Atrial fibrillation (AF) is characterized by irregular electrical impulses originating in the atria, which can lead to severe complications and even death. Due to the intermittent nature of the AF, early and timely monitoring of AF is critical for patients to prevent further exacerbation of the condition. Although ambulatory ECG Holter monitors provide accurate monitoring, the high cost of these devices hinders their wider adoption. Current mobile-based AF detection systems offer a portable solution, however, these systems have various applicability issues such as being easily affected by environmental factors and requiring significant user effort. To overcome the above limitations, we present MobileAF, a novel smartphone-based AF detection system using speakers and microphones. In order to capture minute cardiac activities, we propose a multi-channel pulse wave probing method. In addition, we enhance the signal quality by introducing a three-stage pulse wave purification pipeline. What's more, a ResNet-based network model is built to implement accurate and reliable AF detection. We collect data from 23 participants utilizing our data collection application on the smartphone. Extensive experimental results demonstrate the superior performance of our system, with 97.9% accuracy, 96.8% precision, 97.2% recall, 98.3% specificity, and 97.0% F1 score.
Abstract:In this paper, we construct a pretraining framework for fluid environment perception, which includes an information compression model and the corresponding pretraining method. We test this framework in a two-cylinder problem through numerical simulation. The results show that after unsupervised pretraining with this framework, the intelligent agent can acquire key features of surrounding fluid environment, thereby adapting more quickly and effectively to subsequent multi-scenario tasks. In our research, these tasks include perceiving the position of the upstream obstacle and actively avoiding shedding vortices in the flow field to achieve drag reduction. Better performance of the pretrained agent is discussed in the sensitivity analysis.
Abstract:With the development of deep learning techniques, deep recommendation models also achieve remarkable improvements in terms of recommendation accuracy. However, due to the large number of candidate items in practice and the high cost of preference computation, these methods also suffer from low efficiency of recommendation. The recently proposed tree-based deep recommendation models alleviate the problem by directly learning tree structure and representations under the guidance of recommendation objectives. However, such models have shortcomings. The max-heap assumption in the hierarchical tree, in which the preference for a parent node should be the maximum between the preferences for its children, is difficult to satisfy in their binary classification objectives. To this end, we propose Tree-based Deep Retrieval (TDR for short) for efficient recommendation. In TDR, all the trees generated during the training process are retained to form the forest. When learning the node representation of each tree, we have to satisfy the max-heap assumption as much as possible and mimic beam search behavior over the tree in the training stage. This is achieved by TDR to regard the training task as multi-classification over tree nodes at the same level. However, the number of tree nodes grows exponentially with levels, making us train the preference model with the guidance of the sampled-softmax technique. The experiments are conducted on real-world datasets, validating the effectiveness of the proposed preference model learning method and tree learning method.
Abstract:Atrial fibrillation (AF) is characterized by irregular electrical impulses originating in the atria, which can lead to severe complications and even death. Due to the intermittent nature of the AF, early and timely monitoring of AF is critical for patients to prevent further exacerbation of the condition. Although ambulatory ECG Holter monitors provide accurate monitoring, the high cost of these devices hinders their wider adoption. Current mobile-based AF detection systems offer a portable solution. However, these systems have various applicability issues, such as being easily affected by environmental factors and requiring significant user effort. To overcome the above limitations, we present AcousAF, a novel AF detection system based on acoustic sensors of smartphones. Particularly, we explore the potential of pulse wave acquisition from the wrist using smartphone speakers and microphones. In addition, we propose a well-designed framework comprised of pulse wave probing, pulse wave extraction, and AF detection to ensure accurate and reliable AF detection. We collect data from 20 participants utilizing our custom data collection application on the smartphone. Extensive experimental results demonstrate the high performance of our system, with 92.8% accuracy, 86.9% precision, 87.4% recall, and 87.1% F1 Score.
Abstract:Existing Camouflaged Object Detection (COD) methods rely heavily on large-scale pixel-annotated training sets, which are both time-consuming and labor-intensive. Although weakly supervised methods offer higher annotation efficiency, their performance is far behind due to the unclear visual demarcations between foreground and background in camouflaged images. In this paper, we explore the potential of using boxes as prompts in camouflaged scenes and introduce the first weakly semi-supervised COD method, aiming for budget-efficient and high-precision camouflaged object segmentation with an extremely limited number of fully labeled images. Critically, learning from such limited set inevitably generates pseudo labels with serious noisy pixels. To address this, we propose a noise correction loss that facilitates the model's learning of correct pixels in the early learning stage, and corrects the error risk gradients dominated by noisy pixels in the memorization stage, ultimately achieving accurate segmentation of camouflaged objects from noisy labels. When using only 20% of fully labeled data, our method shows superior performance over the state-of-the-art methods.
Abstract:While stochastic bilevel optimization methods have been extensively studied for addressing large-scale nested optimization problems in machine learning, it remains an open question whether the optimal complexity bounds for solving bilevel optimization are the same as those in single-level optimization. Our main result resolves this question: SPABA, an adaptation of the PAGE method for nonconvex optimization in (Li et al., 2021) to the bilevel setting, can achieve optimal sample complexity in both the finite-sum and expectation settings. We show the optimality of SPABA by proving that there is no gap in complexity analysis between stochastic bilevel and single-level optimization when implementing PAGE. Notably, as indicated by the results of (Dagr\'eou et al., 2022), there might exist a gap in complexity analysis when implementing other stochastic gradient estimators, like SGD and SAGA. In addition to SPABA, we propose several other single-loop stochastic bilevel algorithms, that either match or improve the state-of-the-art sample complexity results, leveraging our convergence rate and complexity analysis. Numerical experiments demonstrate the superior practical performance of the proposed methods.
Abstract:Multi-modal Chain-of-Thought (MCoT) requires models to leverage knowledge from both textual and visual modalities for step-by-step reasoning, which gains increasing attention. Nevertheless, the current MCoT benchmark still faces some challenges: (1) absence of visual modal reasoning, (2) single-step visual modal reasoning, and (3) Domain missing, thereby hindering the development of MCoT. Motivated by this, we introduce a novel benchmark (M$^3$CoT) to address the above challenges, advancing the multi-domain, multi-step, and multi-modal CoT. Additionally, we conduct a thorough evaluation involving abundant MCoT approaches on Vision Large Language Models (VLLMs). In addition, we highlight that the current VLLMs still struggle to correctly reason in M$^3$CoT and there remains a large gap between existing VLLMs and human performance in M$^3$CoT, despite their superior results on previous MCoT benchmarks. To our knowledge, we take the first meaningful step toward the multi-domain, multi-step, and multi-modal scenario in MCoT. We hope that M$^3$CoT can serve as a valuable resource, providing a pioneering foundation in multi-domain, multi-step, multi-modal chain-of-thought research.