Abstract:Nonlinear data visualization using t-distributed stochastic neighbor embedding (t-SNE) enables the representation of complex single-cell transcriptomic landscapes in two or three dimensions to depict biological populations accurately. However, t-SNE often fails to account for uncertainties in the original dataset, leading to misleading visualizations where cell subsets with noise appear indistinguishable. To address these challenges, we introduce uncertainty-aware t-SNE (Ut-SNE), a noise-defending visualization tool tailored for uncertain single-cell RNA-seq data. By creating a probabilistic representation for each sample, Our Ut-SNE accurately incorporates noise about transcriptomic variability into the visual interpretation of single-cell RNA sequencing data, revealing significant uncertainties in transcriptomic variability. Through various examples, we showcase the practical value of Ut-SNE and underscore the significance of incorporating uncertainty awareness into data visualization practices. This versatile uncertainty-aware visualization tool can be easily adapted to other scientific domains beyond single-cell RNA sequencing, making them valuable resources for high-dimensional data analysis.
Abstract:The Cost-aware Dynamic Multi-Workflow Scheduling (CDMWS) in the cloud is a kind of cloud workflow management problem, which aims to assign virtual machine (VM) instances to execute tasks in workflows so as to minimize the total costs, including both the penalties for violating Service Level Agreement (SLA) and the VM rental fees. Powered by deep neural networks, Reinforcement Learning (RL) methods can construct effective scheduling policies for solving CDMWS problems. Traditional policy networks in RL often use basic feedforward architectures to separately determine the suitability of assigning any VM instances, without considering all VMs simultaneously to learn their global information. This paper proposes a novel self-attention policy network for cloud workflow scheduling (SPN-CWS) that captures global information from all VMs. We also develop an Evolution Strategy-based RL (ERL) system to train SPN-CWS reliably and effectively. The trained SPN-CWS can effectively process all candidate VM instances simultaneously to identify the most suitable VM instance to execute every workflow task. Comprehensive experiments show that our method can noticeably outperform several state-of-the-art algorithms on multiple benchmark CDMWS problems.
Abstract:Empathetic response generation, aiming at understanding the user's situation and feelings and respond empathically, is crucial in building human-like dialogue systems. Previous methods mainly focus on using maximum likelihood estimation as the optimization objective for training response generation models, without taking into account the empathy level alignment between generated responses and target responses. To this end, we propose an empathetic response generation using reinforcement learning (EmpRL) framework. The framework designs an effective empathy reward function and generates empathetic responses by maximizing the expected reward through reinforcement learning. Given the powerful text generation capability of pre-trained language models, EmpRL utilizes the pre-trained T5 model as the generator and conducts further training to initialize the policy. To align the empathy level between generated responses and target responses in the context, an empathy reward function containing three empathy communication mechanisms, i.e., emotional reaction, interpretation, and exploration, is constructed using pre-designed and pre-trained empathy identifiers. Finally, the proximal policy optimization algorithm is used to further train the policy to produce empathetic responses. Both automatic and manual evaluations demonstrate that the proposed EmpRL framework can improve the quality of generated responses, enhance the empathy level similarity between generated and target responses, and produce empathetic responses covering both affective and cognitive aspects.
Abstract:Mental health has attracted substantial attention in recent years and LLM can be an effective technology for alleviating this problem owing to its capability in text understanding and dialogue. However, existing research in this domain often suffers from limitations, such as training on datasets lacking crucial prior knowledge and evidence, and the absence of comprehensive evaluation methods. In this paper, we propose a specialized psychological large language model (LLM), named PsycoLLM, trained on a proposed high-quality psychological dataset, including single-turn QA, multi-turn dialogues enriched with prior knowledge and knowledge-based QA. Additionally, to compare the performance of PsycoLLM with other LLMs, we develop a comprehensive psychological benchmark based on authoritative psychological counseling examinations in China, which includes assessments of professional ethics, theoretical proficiency, and case analysis. The experimental results on the benchmark illustrates the effectiveness of PsycoLLM, which demonstrates superior performance compared to other LLMs.
Abstract:Integrating multimodal knowledge into large language models (LLMs) represents a significant advancement in dialogue generation capabilities. However, the effective incorporation of such knowledge in zero-resource scenarios remains a substantial challenge due to the scarcity of diverse, high-quality dialogue datasets. To address this, we propose the Visual Implicit Knowledge Distillation Framework (VIKDF), an innovative approach aimed at enhancing LLMs for enriched dialogue generation in zero-resource contexts by leveraging implicit multimodal knowledge. VIKDF comprises two main stages: knowledge distillation, using an Implicit Query Transformer to extract and encode visual implicit knowledge from image-text pairs into knowledge vectors; and knowledge integration, employing a novel Bidirectional Variational Information Fusion technique to seamlessly integrate these distilled vectors into LLMs. This enables the LLMs to generate dialogues that are not only coherent and engaging but also exhibit a deep understanding of the context through implicit multimodal cues, effectively overcoming the limitations of zero-resource scenarios. Our extensive experimentation across two dialogue datasets shows that VIKDF outperforms existing state-of-the-art models in generating high-quality dialogues. The code will be publicly available following acceptance.
Abstract:Facial Expression Recognition (FER) plays a pivotal role in understanding human emotional cues. However, traditional FER methods based on visual information have some limitations, such as preprocessing, feature extraction, and multi-stage classification procedures. These not only increase computational complexity but also require a significant amount of computing resources. Considering Convolutional Neural Network (CNN)-based FER schemes frequently prove inadequate in identifying the deep, long-distance dependencies embedded within facial expression images, and the Transformer's inherent quadratic computational complexity, this paper presents the FER-YOLO-Mamba model, which integrates the principles of Mamba and YOLO technologies to facilitate efficient coordination in facial expression image recognition and localization. Within the FER-YOLO-Mamba model, we further devise a FER-YOLO-VSS dual-branch module, which combines the inherent strengths of convolutional layers in local feature extraction with the exceptional capability of State Space Models (SSMs) in revealing long-distance dependencies. To the best of our knowledge, this is the first Vision Mamba model designed for facial expression detection and classification. To evaluate the performance of the proposed FER-YOLO-Mamba model, we conducted experiments on two benchmark datasets, RAF-DB and SFEW. The experimental results indicate that the FER-YOLO-Mamba model achieved better results compared to other models. The code is available from https://github.com/SwjtuMa/FER-YOLO-Mamba.
Abstract:Face recognition systems are frequently subjected to a variety of physical and digital attacks of different types. Previous methods have achieved satisfactory performance in scenarios that address physical attacks and digital attacks, respectively. However, few methods are considered to integrate a model that simultaneously addresses both physical and digital attacks, implying the necessity to develop and maintain multiple models. To jointly detect physical and digital attacks within a single model, we propose an innovative approach that can adapt to any network architecture. Our approach mainly contains two types of data augmentation, which we call Simulated Physical Spoofing Clues augmentation (SPSC) and Simulated Digital Spoofing Clues augmentation (SDSC). SPSC and SDSC augment live samples into simulated attack samples by simulating spoofing clues of physical and digital attacks, respectively, which significantly improve the capability of the model to detect "unseen" attack types. Extensive experiments show that SPSC and SDSC can achieve state-of-the-art generalization in Protocols 2.1 and 2.2 of the UniAttackData dataset, respectively. Our method won first place in "Unified Physical-Digital Face Attack Detection" of the 5th Face Anti-spoofing Challenge@CVPR2024. Our final submission obtains 3.75% APCER, 0.93% BPCER, and 2.34% ACER, respectively. Our code is available at https://github.com/Xianhua-He/cvpr2024-face-anti-spoofing-challenge.
Abstract:Thyroid cancer is the most common endocrine malignancy, and accurately distinguishing between benign and malignant thyroid tumors is crucial for developing effective treatment plans in clinical practice. Pathologically, thyroid tumors pose diagnostic challenges due to improper specimen sampling. In this study, we have designed a three-stage model using representation learning to integrate pixel-level and slice-level annotations for distinguishing thyroid tumors. This structure includes a pathology structure recognition method to predict structures related to thyroid tumors, an encoder-decoder network to extract pixel-level annotation information by learning the feature representations of image blocks, and an attention-based learning mechanism for the final classification task. This mechanism learns the importance of different image blocks in a pathological region, globally considering the information from each block. In the third stage, all information from the image blocks in a region is aggregated using attention mechanisms, followed by classification to determine the category of the region. Experimental results demonstrate that our proposed method can predict microscopic structures more accurately. After color-coding, the method achieves results on unstained pathology slides that approximate the quality of Hematoxylin and eosin staining, reducing the need for stained pathology slides. Furthermore, by leveraging the concept of indirect measurement and extracting polarized features from structures correlated with lesions, the proposed method can also classify samples where membrane structures cannot be obtained through sampling, providing a potential objective and highly accurate indirect diagnostic technique for thyroid tumors.
Abstract:Classifying hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) is a critical step in treatment selection and prognosis evaluation for patients with liver diseases. Traditional histopathological diagnosis poses challenges in this context. In this study, we introduce a novel polarization and radiomics feature fusion network, which combines polarization features obtained from Mueller matrix images of liver pathological samples with radiomics features derived from corresponding pathological images to classify HCC and ICC. Our fusion network integrates a two-tier fusion approach, comprising early feature-level fusion and late classification-level fusion. By harnessing the strengths of polarization imaging techniques and image feature-based machine learning, our proposed fusion network significantly enhances classification accuracy. Notably, even at reduced imaging resolutions, the fusion network maintains robust performance due to the additional information provided by polarization features, which may not align with human visual perception. Our experimental results underscore the potential of this fusion network as a powerful tool for computer-aided diagnosis of HCC and ICC, showcasing the benefits and prospects of integrating polarization imaging techniques into the current image-intensive digital pathological diagnosis. We aim to contribute this innovative approach to top-tier journals, offering fresh insights and valuable tools in the fields of medical imaging and cancer diagnosis. By introducing polarization imaging into liver cancer classification, we demonstrate its interdisciplinary potential in addressing challenges in medical image analysis, promising advancements in medical imaging and cancer diagnosis.
Abstract:Emotion recognition in conversations (ERC), the task of recognizing the emotion of each utterance in a conversation, is crucial for building empathetic machines. Existing studies focus mainly on capturing context- and speaker-sensitive dependencies on the textual modality but ignore the significance of multimodal information. Different from emotion recognition in textual conversations, capturing intra- and inter-modal interactions between utterances, learning weights between different modalities, and enhancing modal representations play important roles in multimodal ERC. In this paper, we propose a transformer-based model with self-distillation (SDT) for the task. The transformer-based model captures intra- and inter-modal interactions by utilizing intra- and inter-modal transformers, and learns weights between modalities dynamically by designing a hierarchical gated fusion strategy. Furthermore, to learn more expressive modal representations, we treat soft labels of the proposed model as extra training supervision. Specifically, we introduce self-distillation to transfer knowledge of hard and soft labels from the proposed model to each modality. Experiments on IEMOCAP and MELD datasets demonstrate that SDT outperforms previous state-of-the-art baselines.