Abstract:Many machine learning models are susceptible to adversarial attacks, with decision-based black-box attacks representing the most critical threat in real-world applications. These attacks are extremely stealthy, generating adversarial examples using hard labels obtained from the target machine learning model. This is typically realized by optimizing perturbation directions, guided by decision boundaries identified through query-intensive exact search, significantly limiting the attack success rate. This paper introduces a novel approach using the Approximation Decision Boundary (ADB) to efficiently and accurately compare perturbation directions without precisely determining decision boundaries. The effectiveness of our ADB approach (ADBA) hinges on promptly identifying suitable ADB, ensuring reliable differentiation of all perturbation directions. For this purpose, we analyze the probability distribution of decision boundaries, confirming that using the distribution's median value as ADB can effectively distinguish different perturbation directions, giving rise to the development of the ADBA-md algorithm. ADBA-md only requires four queries on average to differentiate any pair of perturbation directions, which is highly query-efficient. Extensive experiments on six well-known image classifiers clearly demonstrate the superiority of ADBA and ADBA-md over multiple state-of-the-art black-box attacks.
Abstract:Bus timetable optimization is a key issue to reduce operational cost of bus companies and improve the service quality. Existing methods use exact or heuristic algorithms to optimize the timetable in an offline manner. In practice, the passenger flow may change significantly over time. Timetables determined in offline cannot adjust the departure interval to satisfy the changed passenger flow. Aiming at improving the online performance of bus timetable, we propose a Deep Reinforcement Learning based bus Timetable dynamic Optimization method (DRL-TO). In this method, the timetable optimization is considered as a sequential decision problem. A Deep Q-Network (DQN) is employed as the decision model to determine whether to dispatch a bus service during each minute of the service period. Therefore, the departure intervals of bus services are determined in real time in accordance with passenger demand. We identify several new and useful state features for the DQN, including the load factor, carrying capacity utilization rate, and the number of stranding passengers. Taking into account both the interests of the bus company and passengers, a reward function is designed, which includes the indicators of full load rate, empty load rate, passengers' waiting time, and the number of stranding passengers. Building on an existing method for calculating the carrying capacity, we develop a new technique to enhance the matching degree at each bus station. Experiments demonstrate that compared with the timetable generated by the state-of-the-art bus timetable optimization approach based on a memetic algorithm (BTOA-MA), Genetic Algorithm (GA) and the manual method, DRL-TO can dynamically determine the departure intervals based on the real-time passenger flow, saving 8$\%$ of vehicles and reducing 17$\%$ of passengers' waiting time on average.