Abstract:This article improves the Transformer model based on swarm intelligence optimization algorithm, aiming to predict the emotions of employment related text content on American social media. Through text preprocessing, feature extraction, and vectorization, the text data was successfully converted into numerical data and imported into the model for training. The experimental results show that during the training process, the accuracy of the model gradually increased from 49.27% to 82.83%, while the loss value decreased from 0.67 to 0.35, indicating a significant improvement in the performance of the model on the training set. According to the confusion matrix analysis of the training set, the accuracy of the training set is 86.15%. The confusion matrix of the test set also showed good performance, with an accuracy of 82.91%. The accuracy difference between the training set and the test set is only 3.24%, indicating that the model has strong generalization ability. In addition, the evaluation of polygon results shows that the model performs well in classification accuracy, sensitivity, specificity, and area under the curve (AUC), with a Kappa coefficient of 0.66 and an F-measure of 0.80, further verifying the effectiveness of the model in social media sentiment analysis. The improved model proposed in this article not only improves the accuracy of sentiment recognition in employment related texts on social media, but also has important practical significance. This social media based data analysis method can not only capture social dynamics in a timely manner, but also promote decision-makers to pay attention to public concerns and provide data support for improving employment conditions.
Abstract:In this paper, we propose an improved Unet model for brain tumor image segmentation, which combines coordinate attention mechanism and ASPP module to improve the segmentation effect. After the data set is divided, we do the necessary preprocessing to the image and use the improved model to experiment. First, we trained and validated the traditional Unet model. By analyzing the loss curve of the training set and the validation set, we can see that the loss value continues to decline at the first epoch and becomes stable at the eighth epoch. This process shows that the model constantly optimizes its parameters to improve performance. At the same time, the change in the miou (mean Intersection over Union) index shows that the miou value exceeded 0.6 at the 15th epoch, remained above 0.6 thereafter, and reached above 0.7 at the 46th epoch. These results indicate that the basic Unet model is effective in brain tumor image segmentation. Next, we introduce an improved Unet algorithm based on coordinate attention mechanism and ASPP module for experiments. By observing the loss change curves of the training set and the verification set, it is found that the loss value reaches the lowest point at the sixth epoch and then remains relatively stable. At the same time, the miou indicator has stabilized above 0.7 since the 20th epoch and has reached a maximum of 0.76. These results show that the new mechanism introduced significantly improves the segmentation ability of the model. Finally, we apply the trained traditional Unet model and the improved Unet model based on the coordinate attention mechanism and ASPP module to the test set for brain tumor image segmentation prediction. Compared to the traditional Unet, the enhanced model offers superior segmentation and edge accuracy, providing a more reliable method for medical image analysis with the coordinate attention mechanism and ASPP module.
Abstract:The shift from professionally generated content (PGC) to user-generated content (UGC) has revolutionized various media formats, from text to video. With the rapid advancements in generative AI, a similar shift is set to transform the game industry, particularly in the realm of role-playing games (RPGs). This paper introduces a new framework for a text-to-game engine that utilizes foundation models to convert simple textual inputs into complex, interactive RPG experiences. The engine dynamically renders the game story in a multi-modal format and adjusts the game character, environment, and mechanics in real-time in response to player actions. Using this framework, we developed the "Zagii" game engine, which has successfully supported hundreds of RPG games across a diverse range of genres and facilitated tens of thousands of online user gameplay instances. This validates the effectiveness of our frame-work. Our work showcases the potential for a more open and democratized gaming paradigm, highlighting the transformative impact of generative AI on the game life cycle.
Abstract:Many machine learning models are susceptible to adversarial attacks, with decision-based black-box attacks representing the most critical threat in real-world applications. These attacks are extremely stealthy, generating adversarial examples using hard labels obtained from the target machine learning model. This is typically realized by optimizing perturbation directions, guided by decision boundaries identified through query-intensive exact search, significantly limiting the attack success rate. This paper introduces a novel approach using the Approximation Decision Boundary (ADB) to efficiently and accurately compare perturbation directions without precisely determining decision boundaries. The effectiveness of our ADB approach (ADBA) hinges on promptly identifying suitable ADB, ensuring reliable differentiation of all perturbation directions. For this purpose, we analyze the probability distribution of decision boundaries, confirming that using the distribution's median value as ADB can effectively distinguish different perturbation directions, giving rise to the development of the ADBA-md algorithm. ADBA-md only requires four queries on average to differentiate any pair of perturbation directions, which is highly query-efficient. Extensive experiments on six well-known image classifiers clearly demonstrate the superiority of ADBA and ADBA-md over multiple state-of-the-art black-box attacks.
Abstract:Graphs are typical non-Euclidean data of complex structures. In recent years, Riemannian graph representation learning has emerged as an exciting alternative to Euclidean ones. However, Riemannian methods are still in an early stage: most of them present a single curvature (radius) regardless of structural complexity, suffer from numerical instability due to the exponential/logarithmic map, and lack the ability to capture motif regularity. In light of the issues above, we propose the problem of \emph{Motif-aware Riemannian Graph Representation Learning}, seeking a numerically stable encoder to capture motif regularity in a diverse-curvature manifold without labels. To this end, we present a novel Motif-aware Riemannian model with Generative-Contrastive learning (MotifRGC), which conducts a minmax game in Riemannian manifold in a self-supervised manner. First, we propose a new type of Riemannian GCN (D-GCN), in which we construct a diverse-curvature manifold by a product layer with the diversified factor, and replace the exponential/logarithmic map by a stable kernel layer. Second, we introduce a motif-aware Riemannian generative-contrastive learning to capture motif regularity in the constructed manifold and learn motif-aware node representation without external labels. Empirical results show the superiority of MofitRGC.
Abstract:The sequential interaction network usually find itself in a variety of applications, e.g., recommender system. Herein, inferring future interaction is of fundamental importance, and previous efforts are mainly focused on the dynamics in the classic zero-curvature Euclidean space. Despite the promising results achieved by previous methods, a range of significant issues still largely remains open: On the bipartite nature, is it appropriate to place user and item nodes in one identical space regardless of their inherent difference? On the network dynamics, instead of a fixed curvature space, will the representation spaces evolve when new interactions arrive continuously? On the learning paradigm, can we get rid of the label information costly to acquire? To address the aforementioned issues, we propose a novel Contrastive model for Sequential Interaction Network learning on Co-Evolving RiEmannian spaces, CSINCERE. To the best of our knowledge, we are the first to introduce a couple of co-evolving representation spaces, rather than a single or static space, and propose a co-contrastive learning for the sequential interaction network. In CSINCERE, we formulate a Cross-Space Aggregation for message-passing across representation spaces of different Riemannian geometries, and design a Neural Curvature Estimator based on Ricci curvatures for modeling the space evolvement over time. Thereafter, we present a Reweighed Co-Contrast between the temporal views of the sequential network, so that the couple of Riemannian spaces interact with each other for the interaction prediction without labels. Empirical results on 5 public datasets show the superiority of CSINCERE over the state-of-the-art methods.
Abstract:Image reconstruction-based anomaly detection models are widely explored in industrial visual inspection. However, existing models usually suffer from the trade-off between normal reconstruction fidelity and abnormal reconstruction distinguishability, which damages the performance. In this paper, we find that the above trade-off can be better mitigated by leveraging the distinct frequency biases between normal and abnormal reconstruction errors. To this end, we propose Frequency-aware Image Restoration (FAIR), a novel self-supervised image restoration task that restores images from their high-frequency components. It enables precise reconstruction of normal patterns while mitigating unfavorable generalization to anomalies. Using only a simple vanilla UNet, FAIR achieves state-of-the-art performance with higher efficiency on various defect detection datasets. Code: https://github.com/liutongkun/FAIR.
Abstract:Sequential interaction networks (SIN) have been commonly adopted in many applications such as recommendation systems, search engines and social networks to describe the mutual influence between users and items/products. Efforts on representing SIN are mainly focused on capturing the dynamics of networks in Euclidean space, and recently plenty of work has extended to hyperbolic geometry for implicit hierarchical learning. Previous approaches which learn the embedding trajectories of users and items achieve promising results. However, there are still a range of fundamental issues remaining open. For example, is it appropriate to place user and item nodes in one identical space regardless of their inherent discrepancy? Instead of residing in a single fixed curvature space, how will the representation spaces evolve when new interaction occurs? To explore these issues for sequential interaction networks, we propose SINCERE, a novel method representing Sequential Interaction Networks on Co-Evolving RiEmannian manifolds. SIN- CERE not only takes the user and item embedding trajectories in respective spaces into account, but also emphasizes on the space evolvement that how curvature changes over time. Specifically, we introduce a fresh cross-geometry aggregation which allows us to propagate information across different Riemannian manifolds without breaking conformal invariance, and a curvature estimator which is delicately designed to predict global curvatures effectively according to current local Ricci curvatures. Extensive experiments on several real-world datasets demonstrate the promising performance of SINCERE over the state-of-the-art sequential interaction prediction methods.
Abstract:Graph clustering is a longstanding research topic, and has achieved remarkable success with the deep learning methods in recent years. Nevertheless, we observe that several important issues largely remain open. On the one hand, graph clustering from the geometric perspective is appealing but has rarely been touched before, as it lacks a promising space for geometric clustering. On the other hand, contrastive learning boosts the deep graph clustering but usually struggles in either graph augmentation or hard sample mining. To bridge this gap, we rethink the problem of graph clustering from geometric perspective and, to the best of our knowledge, make the first attempt to introduce a heterogeneous curvature space to graph clustering problem. Correspondingly, we present a novel end-to-end contrastive graph clustering model named CONGREGATE, addressing geometric graph clustering with Ricci curvatures. To support geometric clustering, we construct a theoretically grounded Heterogeneous Curvature Space where deep representations are generated via the product of the proposed fully Riemannian graph convolutional nets. Thereafter, we train the graph clusters by an augmentation-free reweighted contrastive approach where we pay more attention to both hard negatives and hard positives in our curvature space. Empirical results on real-world graphs show that our model outperforms the state-of-the-art competitors.
Abstract:Continual graph learning routinely finds its role in a variety of real-world applications where the graph data with different tasks come sequentially. Despite the success of prior works, it still faces great challenges. On the one hand, existing methods work with the zero-curvature Euclidean space, and largely ignore the fact that curvature varies over the coming graph sequence. On the other hand, continual learners in the literature rely on abundant labels, but labeling graph in practice is particularly hard especially for the continuously emerging graphs on-the-fly. To address the aforementioned challenges, we propose to explore a challenging yet practical problem, the self-supervised continual graph learning in adaptive Riemannian spaces. In this paper, we propose a novel self-supervised Riemannian Graph Continual Learner (RieGrace). In RieGrace, we first design an Adaptive Riemannian GCN (AdaRGCN), a unified GCN coupled with a neural curvature adapter, so that Riemannian space is shaped by the learnt curvature adaptive to each graph. Then, we present a Label-free Lorentz Distillation approach, in which we create teacher-student AdaRGCN for the graph sequence. The student successively performs intra-distillation from itself and inter-distillation from the teacher so as to consolidate knowledge without catastrophic forgetting. In particular, we propose a theoretically grounded Generalized Lorentz Projection for the contrastive distillation in Riemannian space. Extensive experiments on the benchmark datasets show the superiority of RieGrace, and additionally, we investigate on how curvature changes over the graph sequence.