Abstract:Score identity Distillation (SiD) is a data-free method that has achieved state-of-the-art performance in image generation by leveraging only a pretrained diffusion model, without requiring any training data. However, the ultimate performance of SiD is constrained by the accuracy with which the pretrained model captures the true data scores at different stages of the diffusion process. In this paper, we introduce SiDA (SiD with Adversarial Loss), which not only enhances generation quality but also improves distillation efficiency by incorporating real images and adversarial loss. SiDA utilizes the encoder from the generator's score network as a discriminator, boosting its ability to distinguish between real images and those generated by SiD. The adversarial loss is batch-normalized within each GPU and then combined with the original SiD loss. This integration effectively incorporates the average "fakeness" per GPU batch into the pixel-based SiD loss, enabling SiDA to distill a single-step generator either from scratch or by fine-tuning an existing one. SiDA converges significantly faster than its predecessor when trained from scratch, and swiftly improves upon the original model's performance after an initial warmup period during fine-tuning from a pre-distilled SiD generator. This one-step adversarial distillation method has set new benchmarks for generation performance when distilling EDM diffusion models pretrained on CIFAR-10 (32x32) and ImageNet (64x64), achieving FID scores of $\mathbf{1.499}$ on CIFAR-10 unconditional, $\mathbf{1.396}$ on CIFAR-10 conditional, and $\mathbf{1.110}$ on ImageNet 64x64. Our open-source code will be integrated into the SiD codebase on GitHub.
Abstract:Low-Rank Adaptation (LoRA) is the bread and butter of Large Language Model (LLM) finetuning. LoRA learns an additive low-rank perturbation, $AB$, of a pretrained matrix parameter $W$ to align the model to a new task or dataset with $W+AB$. We identify three core limitations to LoRA for finetuning--a setting that employs limited amount of data and training steps. First, LoRA employs Dropout to prevent overfitting. We prove that Dropout is only suitable for long training episodes but fails to converge to a reliable regularizer for short training episodes. Second, LoRA's initialization of $B$ at $0$ creates a slow training dynamic between $A$ and $B$. That dynamic is also exacerbated by Dropout that further slows the escape from $0$ for $B$ which is particularly harmful for short training episodes. Third, the scaling factor multiplying each LoRA additive perturbation creates ``short-sighted'' interactions between the LoRA modules of different layers. Motivated by principled analysis of those limitations, we find an elegant solution: a Dropout-free, scaling-free, LoRA with Adaptive Learning rate--coined ALLoRA. By scaling the per sample and per parameter gradients with a coefficient inversely proportional to parameters' $\ell_2$ norm, ALLoRA alleviates those three limitations. As a by-product, ALLoRA removes two hyper-parameters from LoRA: the scaling factor and the dropout rate. Empirical results show that ALLoRA admits better accuracy than LoRA on various settings, including against recent LoRA variants such as Weight-Decomposed Low-Rank Adaptation (DoRA). Ablation studies show our solution is the optimal in a family of weight-dependent / output-dependent approaches on various LLMs including the latest Llama3.
Abstract:Generative retrieval, which has demonstrated effectiveness in text-to-text retrieval, utilizes a sequence-to-sequence model to directly generate candidate identifiers based on natural language queries. Without explicitly computing the similarity between queries and candidates, generative retrieval surpasses dual-tower models in both speed and accuracy on large-scale corpora, providing new insights for cross-modal retrieval. However, constructing identifiers for multimodal data remains an untapped problem, and the modality gap between natural language queries and multimodal candidates hinders retrieval performance due to the absence of additional encoders. To this end, we propose a pioneering generAtive Cross-modal rEtrieval framework (ACE), which is a comprehensive framework for end-to-end cross-modal retrieval based on coarse-to-fine semantic modeling. We propose combining K-Means and RQ-VAE to construct coarse and fine tokens, serving as identifiers for multimodal data. Correspondingly, we design the coarse-to-fine feature fusion strategy to efficiently align natural language queries and candidate identifiers. ACE is the first work to comprehensively demonstrate the feasibility of generative approach on text-to-image/audio/video retrieval, challenging the dominance of the embedding-based dual-tower architecture. Extensive experiments show that ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
Abstract:Many machine learning models are susceptible to adversarial attacks, with decision-based black-box attacks representing the most critical threat in real-world applications. These attacks are extremely stealthy, generating adversarial examples using hard labels obtained from the target machine learning model. This is typically realized by optimizing perturbation directions, guided by decision boundaries identified through query-intensive exact search, significantly limiting the attack success rate. This paper introduces a novel approach using the Approximation Decision Boundary (ADB) to efficiently and accurately compare perturbation directions without precisely determining decision boundaries. The effectiveness of our ADB approach (ADBA) hinges on promptly identifying suitable ADB, ensuring reliable differentiation of all perturbation directions. For this purpose, we analyze the probability distribution of decision boundaries, confirming that using the distribution's median value as ADB can effectively distinguish different perturbation directions, giving rise to the development of the ADBA-md algorithm. ADBA-md only requires four queries on average to differentiate any pair of perturbation directions, which is highly query-efficient. Extensive experiments on six well-known image classifiers clearly demonstrate the superiority of ADBA and ADBA-md over multiple state-of-the-art black-box attacks.
Abstract:Diffusion-based text-to-image generation models trained on extensive text-image pairs have shown the capacity to generate photorealistic images consistent with textual descriptions. However, a significant limitation of these models is their slow sample generation, which requires iterative refinement through the same network. In this paper, we enhance Score identity Distillation (SiD) by developing long and short classifier-free guidance (LSG) to efficiently distill pretrained Stable Diffusion models without using real training data. SiD aims to optimize a model-based explicit score matching loss, utilizing a score-identity-based approximation alongside the proposed LSG for practical computation. By training exclusively with fake images synthesized with its one-step generator, SiD equipped with LSG rapidly improves FID and CLIP scores, achieving state-of-the-art FID performance while maintaining a competitive CLIP score. Specifically, its data-free distillation of Stable Diffusion 1.5 achieves a record low FID of 8.15 on the COCO-2014 validation set, with a CLIP score of 0.304 at an LSG scale of 1.5, and a FID of 9.56 with a CLIP score of 0.313 at an LSG scale of 2. We will make our PyTorch implementation and distilled Stable Diffusion one-step generators available at https://github.com/mingyuanzhou/SiD-LSG
Abstract:In this paper, we present ControlSpeech, a text-to-speech (TTS) system capable of fully cloning the speaker's voice and enabling arbitrary control and adjustment of speaking style, merely based on a few seconds of audio prompt and a simple textual style description prompt. Prior zero-shot TTS models and controllable TTS models either could only mimic the speaker's voice without further control and adjustment capabilities or were unrelated to speaker-specific voice generation. Therefore, ControlSpeech focuses on a more challenging new task-a TTS system with controllable timbre, content, and style at the same time. ControlSpeech takes speech prompts, content prompts, and style prompts as inputs and utilizes bidirectional attention and mask-based parallel decoding to capture corresponding codec representations in a discrete decoupling codec space. Moreover, we discovered the issue of text style controllability in a many-to-many mapping fashion and proposed the Style Mixture Semantic Density (SMSD) model to resolve this problem. SMSD module which is based on Gaussian mixture density networks, is designed to enhance the fine-grained partitioning and sampling capabilities of style semantic information and generate speech with more diverse styles. In terms of experiments, we make available a controllable model toolkit called ControlToolkit with a new style controllable dataset, some replicated baseline models and propose new metrics to evaluate both the control capability and the quality of generated audio in ControlSpeech. The relevant ablation studies validate the necessity of each component in ControlSpeech is necessary. We hope that ControlSpeech can establish the next foundation paradigm of controllable speech synthesis. The relevant code and demo are available at https://github.com/jishengpeng/ControlSpeech .
Abstract:Graph Transformer, due to its global attention mechanism, has emerged as a new tool in dealing with graph-structured data. It is well recognized that the global attention mechanism considers a wider receptive field in a fully connected graph, leading many to believe that useful information can be extracted from all the nodes. In this paper, we challenge this belief: does the globalizing property always benefit Graph Transformers? We reveal the over-globalizing problem in Graph Transformer by presenting both empirical evidence and theoretical analysis, i.e., the current attention mechanism overly focuses on those distant nodes, while the near nodes, which actually contain most of the useful information, are relatively weakened. Then we propose a novel Bi-Level Global Graph Transformer with Collaborative Training (CoBFormer), including the inter-cluster and intra-cluster Transformers, to prevent the over-globalizing problem while keeping the ability to extract valuable information from distant nodes. Moreover, the collaborative training is proposed to improve the model's generalization ability with a theoretical guarantee. Extensive experiments on various graphs well validate the effectiveness of our proposed CoBFormer.
Abstract:Deep clustering as an important branch of unsupervised representation learning focuses on embedding semantically similar samples into the identical feature space. This core demand inspires the exploration of contrastive learning and subspace clustering. However, these solutions always rely on the basic assumption that there are sufficient and category-balanced samples for generating valid high-level representation. This hypothesis actually is too strict to be satisfied for real-world applications. To overcome such a challenge, the natural strategy is utilizing generative models to augment considerable instances. How to use these novel samples to effectively fulfill clustering performance improvement is still difficult and under-explored. In this paper, we propose a novel Generative Calibration Clustering (GCC) method to delicately incorporate feature learning and augmentation into clustering procedure. First, we develop a discriminative feature alignment mechanism to discover intrinsic relationship across real and generated samples. Second, we design a self-supervised metric learning to generate more reliable cluster assignment to boost the conditional diffusion generation. Extensive experimental results on three benchmarks validate the effectiveness and advantage of our proposed method over the state-of-the-art methods.
Abstract:We introduce Score identity Distillation (SiD), an innovative data-free method that distills the generative capabilities of pretrained diffusion models into a single-step generator. SiD not only facilitates an exponentially fast reduction in Fr\'echet inception distance (FID) during distillation but also approaches or even exceeds the FID performance of the original teacher diffusion models. By reformulating forward diffusion processes as semi-implicit distributions, we leverage three score-related identities to create an innovative loss mechanism. This mechanism achieves rapid FID reduction by training the generator using its own synthesized images, eliminating the need for real data or reverse-diffusion-based generation, all accomplished within significantly shortened generation time. Upon evaluation across four benchmark datasets, the SiD algorithm demonstrates high iteration efficiency during distillation and surpasses competing distillation approaches, whether they are one-step or few-step, data-free, or dependent on training data, in terms of generation quality. This achievement not only redefines the benchmarks for efficiency and effectiveness in diffusion distillation but also in the broader field of diffusion-based generation. Our PyTorch implementation will be publicly accessible on GitHub.
Abstract:Recent advances in representation learning have demonstrated the significance of multimodal alignment. The Dual Cross-modal Information Disentanglement (DCID) model, utilizing a unified codebook, shows promising results in achieving fine-grained representation and cross-modal generalization. However, it is still hindered by equal treatment of all channels and neglect of minor event information, resulting in interference from irrelevant channels and limited performance in fine-grained tasks. Thus, in this work, We propose a Training-free Optimization of Codebook (TOC) method to enhance model performance by selecting important channels in the unified space without retraining. Additionally, we introduce the Hierarchical Dual Cross-modal Information Disentanglement (H-DCID) approach to extend information separation and alignment to two levels, capturing more cross-modal details. The experiment results demonstrate significant improvements across various downstream tasks, with TOC contributing to an average improvement of 1.70% for DCID on four tasks, and H-DCID surpassing DCID by an average of 3.64%. The combination of TOC and H-DCID further enhances performance, exceeding DCID by 4.43%. These findings highlight the effectiveness of our methods in facilitating robust and nuanced cross-modal learning, opening avenues for future enhancements. The source code and pre-trained models can be accessed at https://github.com/haihuangcode/TOC_H-DCID.