Abstract:Diffusion models (DM) represent one of the most advanced generative models today, yet recent studies suggest that DMs are vulnerable to backdoor attacks. Backdoor attacks establish hidden associations between particular input patterns and model behaviors, compromising model integrity by triggering undesirable actions with manipulated input data. This vulnerability poses substantial risks, including reputational damage to model owners and the dissemination of harmful content. To mitigate the threat of backdoor attacks, there have been some investigations on backdoor detection and model repair. However, previous work fails to purify the backdoored DMs created by state-of-the-art attacks, rendering the field much underexplored. To bridge this gap, we introduce \textbf{Diff-Cleanse}, a novel two-stage backdoor defense framework specifically designed for DMs. The first stage employs a innovative trigger inversion technique to detect the backdoor and reconstruct the trigger, and the second stage utilizes a structural pruning method to eliminate the backdoor. We evaluate our framework on hundreds of DMs attacked by 3 existing backdoor attack methods. Extensive experiments demonstrate that Diff-Cleanse achieves nearly 100\% detection accuracy and effectively mitigates backdoor impacts, preserving the model's benign performance with minimal compromise. Our code is avaliable at https://github.com/shymuel/diff-cleanse.
Abstract:RGB-D salient object detection (SOD) aims to detect the prominent regions by jointly modeling RGB and depth information. Most RGB-D SOD methods apply the same type of backbones and fusion modules to identically learn the multimodality and multistage features. However, these features contribute differently to the final saliency results, which raises two issues: 1) how to model discrepant characteristics of RGB images and depth maps; 2) how to fuse these cross-modality features in different stages. In this paper, we propose a high-order discrepant interaction network (HODINet) for RGB-D SOD. Concretely, we first employ transformer-based and CNN-based architectures as backbones to encode RGB and depth features, respectively. Then, the high-order representations are delicately extracted and embedded into spatial and channel attentions for cross-modality feature fusion in different stages. Specifically, we design a high-order spatial fusion (HOSF) module and a high-order channel fusion (HOCF) module to fuse features of the first two and the last two stages, respectively. Besides, a cascaded pyramid reconstruction network is adopted to progressively decode the fused features in a top-down pathway. Extensive experiments are conducted on seven widely used datasets to demonstrate the effectiveness of the proposed approach. We achieve competitive performance against 24 state-of-the-art methods under four evaluation metrics.
Abstract:As the saying goes, "seeing is believing". However, with the development of digital face editing tools, we can no longer trust what we can see. Although face forgery detection has made promising progress, most current methods are designed manually by human experts, which is labor-consuming. In this paper, we develop an end-to-end framework based on neural architecture search (NAS) for deepfake detection, which can automatically design network architectures without human intervention. First, a forgery-oriented search space is created to choose appropriate operations for this task. Second, we propose a novel performance estimation metric, which guides the search process to select more general models. The cross-dataset search is also considered to develop more general architectures. Eventually, we connect the cells in a cascaded pyramid way for final forgery classification. Compared with state-of-the-art networks artificially designed, our method achieves competitive performance in both in-dataset and cross-dataset scenarios.
Abstract:Industrial visual inspection aims at detecting surface defects in products during the manufacturing process. Although existing anomaly detection models have shown great performance on many public benchmarks, their limited adjustability and ability to detect logical anomalies hinder their broader use in real-world settings. To this end, in this paper, we propose a novel component-aware anomaly detection framework (ComAD) which can simultaneously achieve adjustable and logical anomaly detection for industrial scenarios. Specifically, we propose to segment images into multiple components based on a lightweight and nearly training-free unsupervised semantic segmentation model. Then, we design an interpretable logical anomaly detection model through modeling the metrological features of each component and their relationships. Despite its simplicity, our framework achieves state-of-the-art performance on image-level logical anomaly detection. Meanwhile, segmenting a product image into multiple components provides a novel perspective for industrial visual inspection, demonstrating great potential in model customization, noise resistance, and anomaly classification. The code will be available at https://github.com/liutongkun/ComAD.
Abstract:Image manipulation localization aims at distinguishing forged regions from the whole test image. Although many outstanding prior arts have been proposed for this task, there are still two issues that need to be further studied: 1) how to fuse diverse types of features with forgery clues; 2) how to progressively integrate multistage features for better localization performance. In this paper, we propose a tripartite progressive integration network (TriPINet) for end-to-end image manipulation localization. First, we extract both visual perception information, e.g., RGB input images, and visual imperceptible features, e.g., frequency and noise traces for forensic feature learning. Second, we develop a guided cross-modality dual-attention (gCMDA) module to fuse different types of forged clues. Third, we design a set of progressive integration squeeze-and-excitation (PI-SE) modules to improve localization performance by appropriately incorporating multiscale features in the decoder. Extensive experiments are conducted to compare our method with state-of-the-art image forensics approaches. The proposed TriPINet obtains competitive results on several benchmark datasets.
Abstract:We present a super-resolution model for an advection-diffusion process with limited information. While most of the super-resolution models assume high-resolution (HR) ground-truth data in the training, in many cases such HR dataset is not readily accessible. Here, we show that a Recurrent Convolutional Network trained with physics-based regularizations is able to reconstruct the HR information without having the HR ground-truth data. Moreover, considering the ill-posed nature of a super-resolution problem, we employ the Recurrent Wasserstein Autoencoder to model the uncertainty.
Abstract:Recent studies show that private training data can be leaked through the gradients sharing mechanism deployed in distributed machine learning systems, such as federated learning (FL). Increasing batch size to complicate data recovery is often viewed as a promising defense strategy against data leakage. In this paper, we revisit this defense premise and propose an advanced data leakage attack with theoretical justification to efficiently recover batch data from the shared aggregated gradients. We name our proposed method as catastrophic data leakage in vertical federated learning (CAFE). Comparing to existing data leakage attacks, our extensive experimental results on vertical FL settings demonstrate the effectiveness of CAFE to perform large-batch data leakage attack with improved data recovery quality. We also propose a practical countermeasure to mitigate CAFE. Our results suggest that private data participated in standard FL, especially the vertical case, have a high risk of being leaked from the training gradients. Our analysis implies unprecedented and practical data leakage risks in those learning settings. The code of our work is available at https://github.com/DeRafael/CAFE.
Abstract:The convolutional neural network (CNN) based approaches have shown great success for speaker verification (SV) tasks, where modeling long temporal context and reducing information loss of speaker characteristics are two important challenges significantly affecting the verification performance. Previous works have introduced dilated convolution and multi-scale aggregation methods to address above challenges. However, such methods are also hard to make full use of some valuable information, which make it difficult to substantially improve the verification performance. To address above issues, we construct a novel CNN-based architecture for SV, called RSKNet-MTSP, where a residual selective kernel block (RSKBlock) and a multiple time-scale statistics pooling (MTSP) module are first proposed. The RSKNet-MTSP can capture both long temporal context and neighbouring information, and gather more speaker-discriminative information from multi-scale features. In order to design a portable model for real applications with limited resources, we then present a lightweight version of RSKNet-MTSP, namely RSKNet-MTSP-L, which employs a combination technique associating the depthwise separable convolutions with low-rank factorization of weight matrices. Extensive experiments are conducted on two public SV datasets, VoxCeleb and Speaker in the Wild (SITW). The results demonstrate that 1) RSKNet-MTSP outperforms the state-of-the-art deep embedding architectures by at least 9%-26% in all test sets. 2) RSKNet-MTSP-L achieves competitive performance compared with baseline models with 17%-39% less network parameters. The ablation experiments further illustrate that our proposed approaches can achieve substantial improvement over prior methods.
Abstract:Horizontal Federated learning (FL) handles multi-client data that share the same set of features, and vertical FL trains a better predictor that combine all the features from different clients. This paper targets solving vertical FL in an asynchronous fashion, and develops a simple FL method. The new method allows each client to run stochastic gradient algorithms without coordination with other clients, so it is suitable for intermittent connectivity of clients. This method further uses a new technique of perturbed local embedding to ensure data privacy and improve communication efficiency. Theoretically, we present the convergence rate and privacy level of our method for strongly convex, nonconvex and even nonsmooth objectives separately. Empirically, we apply our method to FL on various image and healthcare datasets. The results compare favorably to centralized and synchronous FL methods.
Abstract:Distillation-based learning boosts the performance of the miniaturized neural network based on the hypothesis that the representation of a teacher model can be used as structured and relatively weak supervision, and thus would be easily learned by a miniaturized model. However, we find that the representation of a converged heavy model is still a strong constraint for training a small student model, which leads to a high lower bound of congruence loss. In this work, inspired by curriculum learning we consider the knowledge distillation from the perspective of curriculum learning by routing. Instead of supervising the student model with a converged teacher model, we supervised it with some anchor points selected from the route in parameter space that the teacher model passed by, as we called route constrained optimization (RCO). We experimentally demonstrate this simple operation greatly reduces the lower bound of congruence loss for knowledge distillation, hint and mimicking learning. On close-set classification tasks like CIFAR100 and ImageNet, RCO improves knowledge distillation by 2.14% and 1.5% respectively. For the sake of evaluating the generalization, we also test RCO on the open-set face recognition task MegaFace.