Abstract:Recent advances in representation learning have demonstrated the significance of multimodal alignment. The Dual Cross-modal Information Disentanglement (DCID) model, utilizing a unified codebook, shows promising results in achieving fine-grained representation and cross-modal generalization. However, it is still hindered by equal treatment of all channels and neglect of minor event information, resulting in interference from irrelevant channels and limited performance in fine-grained tasks. Thus, in this work, We propose a Training-free Optimization of Codebook (TOC) method to enhance model performance by selecting important channels in the unified space without retraining. Additionally, we introduce the Hierarchical Dual Cross-modal Information Disentanglement (H-DCID) approach to extend information separation and alignment to two levels, capturing more cross-modal details. The experiment results demonstrate significant improvements across various downstream tasks, with TOC contributing to an average improvement of 1.70% for DCID on four tasks, and H-DCID surpassing DCID by an average of 3.64%. The combination of TOC and H-DCID further enhances performance, exceeding DCID by 4.43%. These findings highlight the effectiveness of our methods in facilitating robust and nuanced cross-modal learning, opening avenues for future enhancements. The source code and pre-trained models can be accessed at https://github.com/haihuangcode/TOC_H-DCID.
Abstract:Zero-shot text-to-speech (TTS) has gained significant attention due to its powerful voice cloning capabilities, requiring only a few seconds of unseen speaker voice prompts. However, all previous work has been developed for cloud-based systems. Taking autoregressive models as an example, although these approaches achieve high-fidelity voice cloning, they fall short in terms of inference speed, model size, and robustness. Therefore, we propose MobileSpeech, which is a fast, lightweight, and robust zero-shot text-to-speech system based on mobile devices for the first time. Specifically: 1) leveraging discrete codec, we design a parallel speech mask decoder module called SMD, which incorporates hierarchical information from the speech codec and weight mechanisms across different codec layers during the generation process. Moreover, to bridge the gap between text and speech, we introduce a high-level probabilistic mask that simulates the progression of information flow from less to more during speech generation. 2) For speaker prompts, we extract fine-grained prompt duration from the prompt speech and incorporate text, prompt speech by cross attention in SMD. We demonstrate the effectiveness of MobileSpeech on multilingual datasets at different levels, achieving state-of-the-art results in terms of generating speed and speech quality. MobileSpeech achieves RTF of 0.09 on a single A100 GPU and we have successfully deployed MobileSpeech on mobile devices. Audio samples are available at \url{https://mobilespeech.github.io/} .