Abstract:Graphical models, including Graph Neural Networks (GNNs) and Probabilistic Graphical Models (PGMs), have demonstrated their exceptional capabilities across numerous fields. These models necessitate effective uncertainty quantification to ensure reliable decision-making amid the challenges posed by model training discrepancies and unpredictable testing scenarios. This survey examines recent works that address uncertainty quantification within the model architectures, training, and inference of GNNs and PGMs. We aim to provide an overview of the current landscape of uncertainty in graphical models by organizing the recent methods into uncertainty representation and handling. By summarizing state-of-the-art methods, this survey seeks to deepen the understanding of uncertainty quantification in graphical models, thereby increasing their effectiveness and safety in critical applications.
Abstract:Node classification on graphs is of great importance in many applications. Due to the limited labeling capability and evolution in real-world open scenarios, novel classes can emerge on unlabeled testing nodes. However, little attention has been paid to novel class discovery on graphs. Discovering novel classes is challenging as novel and known class nodes are correlated by edges, which makes their representations indistinguishable when applying message passing GNNs. Furthermore, the novel classes lack labeling information to guide the learning process. In this paper, we propose a novel method Open-world gRAph neuraL network (ORAL) to tackle these challenges. ORAL first detects correlations between classes through semi-supervised prototypical learning. Inter-class correlations are subsequently eliminated by the prototypical attention network, leading to distinctive representations for different classes. Furthermore, to fully explore multi-scale graph features for alleviating label deficiencies, ORAL generates pseudo-labels by aligning and ensembling label estimations from multiple stacked prototypical attention networks. Extensive experiments on several benchmark datasets show the effectiveness of our proposed method.
Abstract:Graphs are typical non-Euclidean data of complex structures. In recent years, Riemannian graph representation learning has emerged as an exciting alternative to Euclidean ones. However, Riemannian methods are still in an early stage: most of them present a single curvature (radius) regardless of structural complexity, suffer from numerical instability due to the exponential/logarithmic map, and lack the ability to capture motif regularity. In light of the issues above, we propose the problem of \emph{Motif-aware Riemannian Graph Representation Learning}, seeking a numerically stable encoder to capture motif regularity in a diverse-curvature manifold without labels. To this end, we present a novel Motif-aware Riemannian model with Generative-Contrastive learning (MotifRGC), which conducts a minmax game in Riemannian manifold in a self-supervised manner. First, we propose a new type of Riemannian GCN (D-GCN), in which we construct a diverse-curvature manifold by a product layer with the diversified factor, and replace the exponential/logarithmic map by a stable kernel layer. Second, we introduce a motif-aware Riemannian generative-contrastive learning to capture motif regularity in the constructed manifold and learn motif-aware node representation without external labels. Empirical results show the superiority of MofitRGC.
Abstract:The fairness issue of clinical data modeling, especially on Electronic Health Records (EHRs), is of utmost importance due to EHR's complex latent structure and potential selection bias. It is frequently necessary to mitigate health disparity while keeping the model's overall accuracy in practice. However, traditional methods often encounter the trade-off between accuracy and fairness, as they fail to capture the underlying factors beyond observed data. To tackle this challenge, we propose a novel model called Fair Longitudinal Medical Deconfounder (FLMD) that aims to achieve both fairness and accuracy in longitudinal Electronic Health Records (EHR) modeling. Drawing inspiration from the deconfounder theory, FLMD employs a two-stage training process. In the first stage, FLMD captures unobserved confounders for each encounter, which effectively represents underlying medical factors beyond observed EHR, such as patient genotypes and lifestyle habits. This unobserved confounder is crucial for addressing the accuracy/fairness dilemma. In the second stage, FLMD combines the learned latent representation with other relevant features to make predictions. By incorporating appropriate fairness criteria, such as counterfactual fairness, FLMD ensures that it maintains high prediction accuracy while simultaneously minimizing health disparities. We conducted comprehensive experiments on two real-world EHR datasets to demonstrate the effectiveness of FLMD. Apart from the comparison of baseline methods and FLMD variants in terms of fairness and accuracy, we assessed the performance of all models on disturbed/imbalanced and synthetic datasets to showcase the superiority of FLMD across different settings and provide valuable insights into its capabilities.
Abstract:Recent studies on Next-basket Recommendation (NBR) have achieved much progress by leveraging Personalized Item Frequency (PIF) as one of the main features, which measures the frequency of the user's interactions with the item. However, taking the PIF as an explicit feature incurs bias towards frequent items. Items that a user purchases frequently are assigned higher weights in the PIF-based recommender system and appear more frequently in the personalized recommendation list. As a result, the system will lose the fairness and balance between items that the user frequently purchases and items that the user never purchases. We refer to this systematic bias on personalized recommendation lists as frequency bias, which narrows users' browsing scope and reduces the system utility. We adopt causal inference theory to address this issue. Considering the influence of historical purchases on users' future interests, the user and item representations can be viewed as unobserved confounders in the causal diagram. In this paper, we propose a deconfounder model named FENDER (Frequency-aware Deconfounder for Next-basket Recommendation) to mitigate the frequency bias. With the deconfounder theory and the causal diagram we propose, FENDER decomposes PIF with a neural tensor layer to obtain substitute confounders for users and items. Then, FENDER performs unbiased recommendations considering the effect of these substitute confounders. Experimental results demonstrate that FENDER has derived diverse and fair results compared to ten baseline models on three datasets while achieving competitive performance. Further experiments illustrate how FENDER balances users' historical purchases and potential interests.
Abstract:The explosion of e-commerce has caused the need for processing and analysis of product titles, like entity typing in product titles. However, the rapid activity in e-commerce has led to the rapid emergence of new entities, which is difficult to be solved by general entity typing. Besides, product titles in e-commerce have very different language styles from text data in general domain. In order to handle new entities in product titles and address the special language styles problem of product titles in e-commerce domain, we propose our textual entailment model with continuous prompt tuning based hypotheses and fusion embeddings for e-commerce entity typing. First, we reformulate the entity typing task into a textual entailment problem to handle new entities that are not present during training. Second, we design a model to automatically generate textual entailment hypotheses using a continuous prompt tuning method, which can generate better textual entailment hypotheses without manual design. Third, we utilize the fusion embeddings of BERT embedding and CharacterBERT embedding with a two-layer MLP classifier to solve the problem that the language styles of product titles in e-commerce are different from that of general domain. To analyze the effect of each contribution, we compare the performance of entity typing and textual entailment model, and conduct ablation studies on continuous prompt tuning and fusion embeddings. We also evaluate the impact of different prompt template initialization for the continuous prompt tuning. We show our proposed model improves the average F1 score by around 2% compared to the baseline BERT entity typing model.
Abstract:Health disparities, or inequalities between different patient demographics, are becoming crucial in medical decision-making, especially in Electronic Health Record (EHR) predictive modeling. To ensure the fairness of sensitive attributes, conventional studies mainly adopt calibration or re-weighting methods to balance the performance on among different demographic groups. However, we argue that these methods have some limitations. First, these methods usually mean a trade-off between the model's performance and fairness. Second, many methods completely attribute unfairness to the data collection process, which lacks substantial evidence. In this paper, we provide an empirical study to discover the possibility of using deconfounder to address the disparity issue in healthcare. Our study can be summarized in two parts. The first part is a pilot study demonstrating the exacerbation of disparity when unobserved confounders exist. The second part proposed a novel framework, Parity Medical Deconfounder (PriMeD), to deal with the disparity issue in healthcare datasets. Inspired by the deconfounder theory, PriMeD adopts a Conditional Variational Autoencoder (CVAE) to learn latent factors (substitute confounders) for observational data, and extensive experiments are provided to show its effectiveness.
Abstract:In this work, we focus on a more challenging few-shot intent detection scenario where many intents are fine-grained and semantically similar. We present a simple yet effective few-shot intent detection schema via contrastive pre-training and fine-tuning. Specifically, we first conduct self-supervised contrastive pre-training on collected intent datasets, which implicitly learns to discriminate semantically similar utterances without using any labels. We then perform few-shot intent detection together with supervised contrastive learning, which explicitly pulls utterances from the same intent closer and pushes utterances across different intents farther. Experimental results show that our proposed method achieves state-of-the-art performance on three challenging intent detection datasets under 5-shot and 10-shot settings.
Abstract:Few-shot intent detection is a challenging task due to the scare annotation problem. In this paper, we propose a Pseudo Siamese Network (PSN) to generate labeled data for few-shot intents and alleviate this problem. PSN consists of two identical subnetworks with the same structure but different weights: an action network and an object network. Each subnetwork is a transformer-based variational autoencoder that tries to model the latent distribution of different components in the sentence. The action network is learned to understand action tokens and the object network focuses on object-related expressions. It provides an interpretable framework for generating an utterance with an action and an object existing in a given intent. Experiments on two real-world datasets show that PSN achieves state-of-the-art performance for the generalized few shot intent detection task.
Abstract:Text classification is usually studied by labeling natural language texts with relevant categories from a predefined set. In the real world, new classes might keep challenging the existing system with limited labeled data. The system should be intelligent enough to recognize upcoming new classes with a few examples. In this work, we define a new task in the NLP domain, incremental few-shot text classification, where the system incrementally handles multiple rounds of new classes. For each round, there is a batch of new classes with a few labeled examples per class. Two major challenges exist in this new task: (i) For the learning process, the system should incrementally learn new classes round by round without re-training on the examples of preceding classes; (ii) For the performance, the system should perform well on new classes without much loss on preceding classes. In addition to formulating the new task, we also release two benchmark datasets in the incremental few-shot setting: intent classification and relation classification. Moreover, we propose two entailment approaches, ENTAILMENT and HYBRID, which show promise for solving this novel problem.