Hye-Young
Abstract:Knowledge distillation has been widely adopted in computer vision task processing, since it can effectively enhance the performance of lightweight student networks by leveraging the knowledge transferred from cumbersome teacher networks. Most existing knowledge distillation methods utilize Kullback-Leibler divergence to mimic the logit output probabilities between the teacher network and the student network. Nonetheless, these methods may neglect the negative parts of the teacher's ''dark knowledge'' because the divergence calculations may ignore the effect of the minute probabilities from the teacher's logit output. This deficiency may lead to suboptimal performance in logit mimicry during the distillation process and result in an imbalance of information acquired by the student network. In this paper, we investigate the impact of this imbalance and propose a novel method, named Balance Divergence Distillation. By introducing a compensatory operation using reverse Kullback-Leibler divergence, our method can improve the modeling of the extremely small values in the negative from the teacher and preserve the learning capacity for the positive. Furthermore, we test the impact of different temperature coefficients adjustments, which may conducted to further balance for knowledge transferring. We evaluate the proposed method on several computer vision tasks, including image classification and semantic segmentation. The evaluation results show that our method achieves an accuracy improvement of 1%~3% for lightweight students on both CIFAR-100 and ImageNet dataset, and a 4.55% improvement in mIoU for PSP-ResNet18 on the Cityscapes dataset. The experiments show that our method is a simple yet highly effective solution that can be smoothly applied to different knowledge distillation methods.
Abstract:LiDAR and photogrammetry are active and passive remote sensing techniques for point cloud acquisition, respectively, offering complementary advantages and heterogeneous. Due to the fundamental differences in sensing mechanisms, spatial distributions and coordinate systems, their point clouds exhibit significant discrepancies in density, precision, noise, and overlap. Coupled with the lack of ground truth for large-scale scenes, integrating the heterogeneous point clouds is a highly challenging task. This paper proposes a self-supervised registration network based on a masked autoencoder, focusing on heterogeneous LiDAR and photogrammetric point clouds. At its core, the method introduces a multi-scale masked training strategy to extract robust features from heterogeneous point clouds under self-supervision. To further enhance registration performance, a rotation-translation embedding module is designed to effectively capture the key features essential for accurate rigid transformations. Building upon the robust representations, a transformer-based architecture seamlessly integrates local and global features, fostering precise alignment across diverse point cloud datasets. The proposed method demonstrates strong feature extraction capabilities for both LiDAR and photogrammetric point clouds, addressing the challenges of acquiring ground truth at the scene level. Experiments conducted on two real-world datasets validate the effectiveness of the proposed method in solving heterogeneous point cloud registration problems.
Abstract:Recent advances in 2D image generation have achieved remarkable quality,largely driven by the capacity of diffusion models and the availability of large-scale datasets. However, direct 3D generation is still constrained by the scarcity and lower fidelity of 3D datasets. In this paper, we introduce Zero-1-to-G, a novel approach that addresses this problem by enabling direct single-view generation on Gaussian splats using pretrained 2D diffusion models. Our key insight is that Gaussian splats, a 3D representation, can be decomposed into multi-view images encoding different attributes. This reframes the challenging task of direct 3D generation within a 2D diffusion framework, allowing us to leverage the rich priors of pretrained 2D diffusion models. To incorporate 3D awareness, we introduce cross-view and cross-attribute attention layers, which capture complex correlations and enforce 3D consistency across generated splats. This makes Zero-1-to-G the first direct image-to-3D generative model to effectively utilize pretrained 2D diffusion priors, enabling efficient training and improved generalization to unseen objects. Extensive experiments on both synthetic and in-the-wild datasets demonstrate superior performance in 3D object generation, offering a new approach to high-quality 3D generation.
Abstract:In this paper, we propose ProTracker, a novel framework for robust and accurate long-term dense tracking of arbitrary points in videos. The key idea of our method is incorporating probabilistic integration to refine multiple predictions from both optical flow and semantic features for robust short-term and long-term tracking. Specifically, we integrate optical flow estimations in a probabilistic manner, producing smooth and accurate trajectories by maximizing the likelihood of each prediction. To effectively re-localize challenging points that disappear and reappear due to occlusion, we further incorporate long-term feature correspondence into our flow predictions for continuous trajectory generation. Extensive experiments show that ProTracker achieves the state-of-the-art performance among unsupervised and self-supervised approaches, and even outperforms supervised methods on several benchmarks. Our code and model will be publicly available upon publication.
Abstract:Graph neural network universal interatomic potentials (GNN-UIPs) have demonstrated remarkable generalization and transfer capabilities in material discovery and property prediction. These models can accelerate molecular dynamics (MD) simulation by several orders of magnitude while maintaining \textit{ab initio} accuracy, making them a promising new paradigm in material simulations. One notable example is Crystal Hamiltonian Graph Neural Network (CHGNet), pretrained on the energies, forces, stresses, and magnetic moments from the MPtrj dataset, representing a state-of-the-art GNN-UIP model for charge-informed MD simulations. However, training the CHGNet model is time-consuming(8.3 days on one A100 GPU) for three reasons: (i) requiring multi-layer propagation to reach more distant atom information, (ii) requiring second-order derivatives calculation to finish weights updating and (iii) the implementation of reference CHGNet does not fully leverage the computational capabilities. This paper introduces FastCHGNet, an optimized CHGNet, with three contributions: Firstly, we design innovative Force/Stress Readout modules to decompose Force/Stress prediction. Secondly, we adopt massive optimizations such as kernel fusion, redundancy bypass, etc, to exploit GPU computation power sufficiently. Finally, we extend CHGNet to support multiple GPUs and propose a load-balancing technique to enhance GPU utilization. Numerical results show that FastCHGNet reduces memory footprint by a factor of 3.59. The final training time of FastCHGNet can be decreased to \textbf{1.53 hours} on 32 GPUs without sacrificing model accuracy.
Abstract:Trajectory planning in robotics aims to generate collision-free pose sequences that can be reliably executed. Recently, vision-to-planning systems have garnered increasing attention for their efficiency and ability to interpret and adapt to surrounding environments. However, traditional modular systems suffer from increased latency and error propagation, while purely data-driven approaches often overlook the robot's kinematic constraints. This oversight leads to discrepancies between planned trajectories and those that are executable. To address these challenges, we propose iKap, a novel vision-to-planning system that integrates the robot's kinematic model directly into the learning pipeline. iKap employs a self-supervised learning approach and incorporates the state transition model within a differentiable bi-level optimization framework. This integration ensures the network learns collision-free waypoints while satisfying kinematic constraints, enabling gradient back-propagation for end-to-end training. Our experimental results demonstrate that iKap achieves higher success rates and reduced latency compared to the state-of-the-art methods. Besides the complete system, iKap offers a visual-to-planning network that seamlessly integrates kinematics into various controllers, providing a robust solution for robots navigating complex and dynamic environments.
Abstract:Preconditioning techniques are crucial for enhancing the efficiency of solving large-scale linear equation systems that arise from partial differential equation (PDE) discretization. These techniques, such as Incomplete Cholesky factorization (IC) and data-driven neural network methods, accelerate the convergence of iterative solvers like Conjugate Gradient (CG) by approximating the original matrices. This paper introduces a novel approach that integrates Graph Neural Network (GNN) with traditional IC, addressing the shortcomings of direct generation methods based on GNN and achieving significant improvements in computational efficiency and scalability. Experimental results demonstrate an average reduction in iteration counts by 24.8% compared to IC and a two-order-of-magnitude increase in training scale compared to previous methods. A three-dimensional static structural analysis utilizing finite element methods was validated on training sparse matrices of up to 5 million dimensions and inference scales of up to 10 million. Furthermore, the approach demon-strates robust generalization capabilities across scales, facilitating the effective acceleration of CG solvers for large-scale linear equations using small-scale data on modest hardware. The method's robustness and scalability make it a practical solution for computational science.
Abstract:Scene Coordinate Regression (SCR) is a visual localization technique that utilizes deep neural networks (DNN) to directly regress 2D-3D correspondences for camera pose estimation. However, current SCR methods often face challenges in handling repetitive textures and meaningless areas due to their reliance on implicit triangulation. In this paper, we propose an efficient scene coordinate encoding and relocalization method. Compared with the existing SCR methods, we design a unified architecture for both scene encoding and salient keypoint detection, enabling our system to focus on encoding informative regions, thereby significantly enhancing efficiency. Additionally, we introduce a mechanism that leverages sequential information during both map encoding and relocalization, which strengthens implicit triangulation, particularly in repetitive texture environments. Comprehensive experiments conducted across indoor and outdoor datasets demonstrate that the proposed system outperforms other state-of-the-art (SOTA) SCR methods. Our single-frame relocalization mode improves the recall rate of our baseline by 6.4% and increases the running speed from 56Hz to 90Hz. Furthermore, our sequence-based mode increases the recall rate by 11% while maintaining the original efficiency.
Abstract:Graph-based and sequential methods are two popular recommendation paradigms, each excelling in its domain but lacking the ability to leverage signals from the other. To address this, we propose a novel method that integrates both approaches for enhanced performance. Our framework uses Graph Neural Network (GNN)-based and sequential recommenders as separate submodules while sharing a unified embedding space optimized jointly. To enable positive knowledge transfer, we design a loss function that enforces alignment and uniformity both within and across submodules. Experiments on three real-world datasets demonstrate that the proposed method significantly outperforms using either approach alone and achieves state-of-the-art results. Our implementations are publicly available at https://github.com/YuweiCao-UIC/GSAU.git.
Abstract:Traffic Surveillance Systems (TSS) have become increasingly crucial in modern intelligent transportation systems, with vision-based technologies playing a central role for scene perception and understanding. While existing surveys typically focus on isolated aspects of TSS, a comprehensive analysis bridging low-level and high-level perception tasks, particularly considering emerging technologies, remains lacking. This paper presents a systematic review of vision-based technologies in TSS, examining both low-level perception tasks (object detection, classification, and tracking) and high-level perception applications (parameter estimation, anomaly detection, and behavior understanding). Specifically, we first provide a detailed methodological categorization and comprehensive performance evaluation for each task. Our investigation reveals five fundamental limitations in current TSS: perceptual data degradation in complex scenarios, data-driven learning constraints, semantic understanding gaps, sensing coverage limitations and computational resource demands. To address these challenges, we systematically analyze five categories of potential solutions: advanced perception enhancement, efficient learning paradigms, knowledge-enhanced understanding, cooperative sensing frameworks and efficient computing frameworks. Furthermore, we evaluate the transformative potential of foundation models in TSS, demonstrating their unique capabilities in zero-shot learning, semantic understanding, and scene generation. This review provides a unified framework bridging low-level and high-level perception tasks, systematically analyzes current limitations and solutions, and presents a structured roadmap for integrating emerging technologies, particularly foundation models, to enhance TSS capabilities.