Abstract:Molecular property prediction is a crucial task in the process of Artificial Intelligence-Driven Drug Discovery (AIDD). The challenge of developing models that surpass traditional non-neural network methods continues to be a vibrant area of research. This paper presents a novel graph neural network model-the Kolmogorov-Arnold Network (KAN)-based Graph Neural Network (KA-GNN), which incorporates Fourier series, specifically designed for molecular property prediction. This model maintains the high interpretability characteristic of KAN methods while being extremely efficient in computational resource usage, making it an ideal choice for deployment in resource-constrained environments. Tested and validated on seven public datasets, KA-GNN has shown significant improvements in property predictions over the existing state-of-the-art (SOTA) benchmarks.
Abstract:Accurate and efficient prediction of polymer properties is of key importance for polymer design. Traditional experimental tools and density function theory (DFT)-based simulations for polymer property evaluation, are both expensive and time-consuming. Recently, a gigantic amount of graph-based molecular models have emerged and demonstrated huge potential in molecular data analysis. Even with the great progresses, these models tend to ignore the high-order and mutliscale information within the data. In this paper, we develop molecular topological deep learning (Mol-TDL) for polymer property analysis. Our Mol-TDL incorporates both high-order interactions and multiscale properties into topological deep learning architecture. The key idea is to represent polymer molecules as a series of simplicial complices at different scales and build up simplical neural networks accordingly. The aggregated information from different scales provides a more accurate prediction of polymer molecular properties.
Abstract:The emergence of Large Language Models (LLMs) has revolutionized natural language processing in various applications especially in e-commerce. One crucial step before the application of such LLMs in these fields is to understand and compare the performance in different use cases in such tasks. This paper explored the efficacy of LLMs in the e-commerce domain, focusing on instruction-tuning an open source LLM model with public e-commerce datasets of varying sizes and comparing the performance with the conventional models prevalent in industrial applications. We conducted a comprehensive comparison between LLMs and traditional pre-trained language models across specific tasks intrinsic to the e-commerce domain, namely classification, generation, summarization, and named entity recognition (NER). Furthermore, we examined the effectiveness of the current niche industrial application of very large LLM, using in-context learning, in e-commerce specific tasks. Our findings indicate that few-shot inference with very large LLMs often does not outperform fine-tuning smaller pre-trained models, underscoring the importance of task-specific model optimization.Additionally, we investigated different training methodologies such as single-task training, mixed-task training, and LoRA merging both within domain/tasks and between different tasks. Through rigorous experimentation and analysis, this paper offers valuable insights into the potential effectiveness of LLMs to advance natural language processing capabilities within the e-commerce industry.
Abstract:Efficiently detecting target weld seams while ensuring sub-millimeter accuracy has always been an important challenge in autonomous welding, which has significant application in industrial practice. Previous works mostly focused on recognizing and localizing welding seams one by one, leading to inferior efficiency in modeling the workpiece. This paper proposes a novel framework capable of multiple weld seams extraction using both RGB images and 3D point clouds. The RGB image is used to obtain the region of interest by approximately localizing the weld seams, and the point cloud is used to achieve the fine-edge extraction of the weld seams within the region of interest using region growth. Our method is further accelerated by using a pre-trained deep learning model to ensure both efficiency and generalization ability. The performance of the proposed method has been comprehensively tested on various workpieces featuring both linear and curved weld seams and in physical experiment systems. The results showcase considerable potential for real-world industrial applications, emphasizing the method's efficiency and effectiveness. Videos of the real-world experiments can be found at https://youtu.be/pq162HSP2D4.
Abstract:Large language models (LLMs) often struggle to provide up-to-date information due to their one-time training and the constantly evolving nature of the world. To keep LLMs current, existing approaches typically involve continued pre-training on new documents. However, they frequently face difficulties in extracting stored knowledge. Motivated by the remarkable success of the Feynman Technique in efficient human learning, we introduce Self-Tuning, a learning framework aimed at improving an LLM's ability to effectively acquire new knowledge from raw documents through self-teaching. Specifically, we develop a Self-Teaching strategy that augments the documents with a set of knowledge-intensive tasks created in a self-supervised manner, focusing on three crucial aspects: memorization, comprehension, and self-reflection. Additionally, we introduce three Wiki-Newpages-2023-QA datasets to facilitate an in-depth analysis of an LLM's knowledge acquisition ability concerning memorization, extraction, and reasoning. Extensive experimental results on Llama2 family models reveal that Self-Tuning consistently exhibits superior performance across all knowledge acquisition tasks and excels in preserving previous knowledge.
Abstract:Generating customized content in videos has received increasing attention recently. However, existing works primarily focus on customized text-to-video generation for single subject, suffering from subject-missing and attribute-binding problems when the video is expected to contain multiple subjects. Furthermore, existing models struggle to assign the desired actions to the corresponding subjects (action-binding problem), failing to achieve satisfactory multi-subject generation performance. To tackle the problems, in this paper, we propose DisenStudio, a novel framework that can generate text-guided videos for customized multiple subjects, given few images for each subject. Specifically, DisenStudio enhances a pretrained diffusion-based text-to-video model with our proposed spatial-disentangled cross-attention mechanism to associate each subject with the desired action. Then the model is customized for the multiple subjects with the proposed motion-preserved disentangled finetuning, which involves three tuning strategies: multi-subject co-occurrence tuning, masked single-subject tuning, and multi-subject motion-preserved tuning. The first two strategies guarantee the subject occurrence and preserve their visual attributes, and the third strategy helps the model maintain the temporal motion-generation ability when finetuning on static images. We conduct extensive experiments to demonstrate our proposed DisenStudio significantly outperforms existing methods in various metrics. Additionally, we show that DisenStudio can be used as a powerful tool for various controllable generation applications.
Abstract:We formulate a unifying framework for unsupervised continual learning (UCL), which disentangles learning objectives that are specific to the present and the past data, encompassing stability, plasticity, and cross-task consolidation. The framework reveals that many existing UCL approaches overlook cross-task consolidation and try to balance plasticity and stability in a shared embedding space. This results in worse performance due to a lack of within-task data diversity and reduced effectiveness in learning the current task. Our method, Osiris, which explicitly optimizes all three objectives on separate embedding spaces, achieves state-of-the-art performance on all benchmarks, including two novel benchmarks proposed in this paper featuring semantically structured task sequences. Compared to standard benchmarks, these two structured benchmarks more closely resemble visual signals received by humans and animals when navigating real-world environments. Finally, we show some preliminary evidence that continual models can benefit from such realistic learning scenarios.
Abstract:Causal graph recovery is essential in the field of causal inference. Traditional methods are typically knowledge-based or statistical estimation-based, which are limited by data collection biases and individuals' knowledge about factors affecting the relations between variables of interests. The advance of large language models (LLMs) provides opportunities to address these problems. We propose a novel method that utilizes the extensive knowledge contained within a large corpus of scientific literature to deduce causal relationships in general causal graph recovery tasks. This method leverages Retrieval Augmented-Generation (RAG) based LLMs to systematically analyze and extract pertinent information from a comprehensive collection of research papers. Our method first retrieves relevant text chunks from the aggregated literature. Then, the LLM is tasked with identifying and labelling potential associations between factors. Finally, we give a method to aggregate the associational relationships to build a causal graph. We demonstrate our method is able to construct high quality causal graphs on the well-known SACHS dataset solely from literature.
Abstract:Customized text-to-video generation aims to generate text-guided videos with customized user-given subjects, which has gained increasing attention recently. However, existing works are primarily limited to generating videos for a single subject, leaving the more challenging problem of customized multi-subject text-to-video generation largely unexplored. In this paper, we fill this gap and propose a novel VideoDreamer framework. VideoDreamer can generate temporally consistent text-guided videos that faithfully preserve the visual features of the given multiple subjects. Specifically, VideoDreamer leverages the pretrained Stable Diffusion with latent-code motion dynamics and temporal cross-frame attention as the base video generator. The video generator is further customized for the given multiple subjects by the proposed Disen-Mix Finetuning and Human-in-the-Loop Re-finetuning strategy, which can tackle the attribute binding problem of multi-subject generation. We also introduce MultiStudioBench, a benchmark for evaluating customized multi-subject text-to-video generation models. Extensive experiments demonstrate the remarkable ability of VideoDreamer to generate videos with new content such as new events and backgrounds, tailored to the customized multiple subjects. Our project page is available at https://videodreamer23.github.io/.
Abstract:Given a small set of images of a specific subject, subject-driven text-to-image generation aims to generate customized images of the subject according to new text descriptions, which has attracted increasing attention in the community recently. Current subject-driven text-to-image generation methods are mainly based on finetuning a pretrained large-scale text-to-image generation model. However, these finetuning methods map the images of the subject into an embedding highly entangled with subject-identity-unrelated information, which may result in the inconsistency between the generated images and the text descriptions and the changes in the subject identity. To tackle the problem, we propose DisenBooth, a disentangled parameter-efficient tuning framework for subject-driven text-to-image generation. DisenBooth enables generating new images that simultaneously preserve the subject identity and conform to the text descriptions, by disentangling the embedding into an identity-related and an identity-unrelated part. Specifically, DisenBooth is based on the pretrained diffusion models and conducts finetuning in the diffusion denoising process, where a shared identity embedding and an image-specific identity-unrelated embedding are utilized jointly for denoising each image. To make the two embeddings disentangled, two auxiliary objectives are proposed. Additionally, to improve the finetuning efficiency, a parameter-efficient finetuning strategy is adopted. Extensive experiments show that our DisenBooth can faithfully learn well-disentangled identity-related and identity-unrelated embeddings. With the shared identity embedding, DisenBooth demonstrates superior subject-driven text-to-image generation ability. Additionally, DisenBooth provides a more flexible and controllable framework with different combinations of the disentangled embeddings.