Department of Computer Science, Ryerson University, Toronto, ON, Canada M5B 2K3
Abstract:Performative prediction models account for feedback loops in decision-making processes where predictions influence future data distributions. While existing work largely assumes insensitivity of data distributions to small strategy changes, this assumption usually fails in real-world competitive (i.e. multi-agent) settings. For example, in Bertrand-type competitions, a small reduction in one firm's price can lead that firm to capture the entire demand, while all others sharply lose all of their customers. We study a representative setting of multi-agent performative prediction in which insensitivity assumptions do not hold, and investigate the convergence of natural dynamics. To do so, we focus on a specific game that we call the ''Bank Game'', where two lenders compete over interest rates and credit score thresholds. Consumers act similarly as to in a Bertrand Competition, with each consumer selecting the firm with the lowest interest rate that they are eligible for based on the firms' credit thresholds. Our analysis characterizes the equilibria of this game and demonstrates that when both firms use a common and natural no-regret learning dynamic -- exponential weights -- with proper initialization, the dynamics always converge to stable outcomes despite the general-sum structure. Notably, our setting admits multiple stable equilibria, with convergence dependent on initial conditions. We also provide theoretical convergence results in the stochastic case when the utility matrix is not fully known, but each learner can observe sufficiently many samples of consumers at each time step to estimate it, showing robustness to slight mis-specifications. Finally, we provide experimental results that validate our theoretical findings.
Abstract:Transformers have become foundational for visual tasks such as object detection, semantic segmentation, and video understanding, but their quadratic complexity in attention mechanisms presents scalability challenges. To address these limitations, the Mamba architecture utilizes state-space models (SSMs) for linear scalability, efficient processing, and improved contextual awareness. This paper investigates Mamba architecture for visual domain applications and its recent advancements, including Vision Mamba (ViM) and VideoMamba, which introduce bidirectional scanning, selective scanning mechanisms, and spatiotemporal processing to enhance image and video understanding. Architectural innovations like position embeddings, cross-scan modules, and hierarchical designs further optimize the Mamba framework for global and local feature extraction. These advancements position Mamba as a promising architecture in computer vision research and applications.
Abstract:Multi-modality magnetic resonance imaging (MRI) is essential for the diagnosis and treatment of brain tumors. However, missing modalities are commonly observed due to limitations in scan time, scan corruption, artifacts, motion, and contrast agent intolerance. Synthesis of missing MRI has been a means to address the limitations of modality insufficiency in clinical practice and research. However, there are still some challenges, such as poor generalization, inaccurate non-linear mapping, and slow processing speeds. To address the aforementioned issues, we propose a novel unified synthesis model, the Frequency-guided and Coarse-to-fine Unified Diffusion Model (FgC2F-UDiff), designed for multiple inputs and outputs. Specifically, the Coarse-to-fine Unified Network (CUN) fully exploits the iterative denoising properties of diffusion models, from global to detail, by dividing the denoising process into two stages, coarse and fine, to enhance the fidelity of synthesized images. Secondly, the Frequency-guided Collaborative Strategy (FCS) harnesses appropriate frequency information as prior knowledge to guide the learning of a unified, highly non-linear mapping. Thirdly, the Specific-acceleration Hybrid Mechanism (SHM) integrates specific mechanisms to accelerate the diffusion model and enhance the feasibility of many-to-many synthesis. Extensive experimental evaluations have demonstrated that our proposed FgC2F-UDiff model achieves superior performance on two datasets, validated through a comprehensive assessment that includes both qualitative observations and quantitative metrics, such as PSNR SSIM, LPIPS, and FID.
Abstract:Vision Transformers have made remarkable progress in recent years, achieving state-of-the-art performance in most vision tasks. A key component of this success is due to the introduction of the Multi-Head Self-Attention (MHSA) module, which enables each head to learn different representations by applying the attention mechanism independently. In this paper, we empirically demonstrate that Vision Transformers can be further enhanced by overlapping the heads in MHSA. We introduce Multi-Overlapped-Head Self-Attention (MOHSA), where heads are overlapped with their two adjacent heads for queries, keys, and values, while zero-padding is employed for the first and last heads, which have only one neighboring head. Various paradigms for overlapping ratios are proposed to fully investigate the optimal performance of our approach. The proposed approach is evaluated using five Transformer models on four benchmark datasets and yields a significant performance boost. The source code will be made publicly available upon publication.
Abstract:Molecular property prediction is a crucial task in the process of Artificial Intelligence-Driven Drug Discovery (AIDD). The challenge of developing models that surpass traditional non-neural network methods continues to be a vibrant area of research. This paper presents a novel graph neural network model-the Kolmogorov-Arnold Network (KAN)-based Graph Neural Network (KA-GNN), which incorporates Fourier series, specifically designed for molecular property prediction. This model maintains the high interpretability characteristic of KAN methods while being extremely efficient in computational resource usage, making it an ideal choice for deployment in resource-constrained environments. Tested and validated on seven public datasets, KA-GNN has shown significant improvements in property predictions over the existing state-of-the-art (SOTA) benchmarks.
Abstract:Human pose estimation aims at locating the specific joints of humans from the images or videos. While existing deep learning-based methods have achieved high positioning accuracy, they often struggle with generalization in occlusion scenarios. In this paper, we propose an occluded human pose estimation framework based on limb joint augmentation to enhance the generalization ability of the pose estimation model on the occluded human bodies. Specifically, the occlusion blocks are at first employed to randomly cover the limb joints of the human bodies from the training images, imitating the scene where the objects or other people partially occlude the human body. Trained by the augmented samples, the pose estimation model is encouraged to accurately locate the occluded keypoints based on the visible ones. To further enhance the localization ability of the model, this paper constructs a dynamic structure loss function based on limb graphs to explore the distribution of occluded joints by evaluating the dependence between adjacent joints. Extensive experimental evaluations on two occluded datasets, OCHuman and CrowdPose, demonstrate significant performance improvements without additional computation cost during inference.
Abstract:3D point cloud classification requires distinct models from 2D image classification due to the divergent characteristics of the respective input data. While 3D point clouds are unstructured and sparse, 2D images are structured and dense. Bridging the domain gap between these two data types is a non-trivial challenge to enable model interchangeability. Recent research using Lattice Point Classifier (LPC) highlights the feasibility of cross-domain applicability. However, the lattice projection operation in LPC generates 2D images with disconnected projected pixels. In this paper, we explore three distinct algorithms for mapping 3D point clouds into 2D images. Through extensive experiments, we thoroughly examine and analyze their performance and defense mechanisms. Leveraging current large foundation models, we scrutinize the feature disparities between regular 2D images and projected 2D images. The proposed approaches demonstrate superior accuracy and robustness against adversarial attacks. The generative model-based mapping algorithms yield regular 2D images, further minimizing the domain gap from regular 2D classification tasks. The source code is available at https://github.com/KaidongLi/pytorch-LatticePointClassifier.git.
Abstract:Data augmentation (DA) is an effective approach for enhancing model performance with limited data, such as light field (LF) image super-resolution (SR). LF images inherently possess rich spatial and angular information. Nonetheless, there is a scarcity of DA methodologies explicitly tailored for LF images, and existing works tend to concentrate solely on either the spatial or angular domain. This paper proposes a novel spatial and angular DA strategy named MaskBlur for LF image SR by concurrently addressing spatial and angular aspects. MaskBlur consists of spatial blur and angular dropout two components. Spatial blur is governed by a spatial mask, which controls where pixels are blurred, i.e., pasting pixels between the low-resolution and high-resolution domains. The angular mask is responsible for angular dropout, i.e., selecting which views to perform the spatial blur operation. By doing so, MaskBlur enables the model to treat pixels differently in the spatial and angular domains when super-resolving LF images rather than blindly treating all pixels equally. Extensive experiments demonstrate the efficacy of MaskBlur in significantly enhancing the performance of existing SR methods. We further extend MaskBlur to other LF image tasks such as denoising, deblurring, low-light enhancement, and real-world SR. Code is publicly available at \url{https://github.com/chaowentao/MaskBlur}.
Abstract:The Vision Transformer (ViT) leverages the Transformer's encoder to capture global information by dividing images into patches and achieves superior performance across various computer vision tasks. However, the self-attention mechanism of ViT captures the global context from the outset, overlooking the inherent relationships between neighboring pixels in images or videos. Transformers mainly focus on global information while ignoring the fine-grained local details. Consequently, ViT lacks inductive bias during image or video dataset training. In contrast, convolutional neural networks (CNNs), with their reliance on local filters, possess an inherent inductive bias, making them more efficient and quicker to converge than ViT with less data. In this paper, we present a lightweight Depth-Wise Convolution module as a shortcut in ViT models, bypassing entire Transformer blocks to ensure the models capture both local and global information with minimal overhead. Additionally, we introduce two architecture variants, allowing the Depth-Wise Convolution modules to be applied to multiple Transformer blocks for parameter savings, and incorporating independent parallel Depth-Wise Convolution modules with different kernels to enhance the acquisition of local information. The proposed approach significantly boosts the performance of ViT models on image classification, object detection and instance segmentation by a large margin, especially on small datasets, as evaluated on CIFAR-10, CIFAR-100, Tiny-ImageNet and ImageNet for image classification, and COCO for object detection and instance segmentation. The source code can be accessed at https://github.com/ZTX-100/Efficient_ViT_with_DW.
Abstract:H&E-to-IHC stain translation techniques offer a promising solution for precise cancer diagnosis, especially in low-resource regions where there is a shortage of health professionals and limited access to expensive equipment. Considering the pixel-level misalignment of H&E-IHC image pairs, current research explores the pathological consistency between patches from the same positions of the image pair. However, most of them overemphasize the correspondence between domains or patches, overlooking the side information provided by the non-corresponding objects. In this paper, we propose a Mix-Domain Contrastive Learning (MDCL) method to leverage the supervision information in unpaired H&E-to-IHC stain translation. Specifically, the proposed MDCL method aggregates the inter-domain and intra-domain pathology information by estimating the correlation between the anchor patch and all the patches from the matching images, encouraging the network to learn additional contrastive knowledge from mixed domains. With the mix-domain pathology information aggregation, MDCL enhances the pathological consistency between the corresponding patches and the component discrepancy of the patches from the different positions of the generated IHC image. Extensive experiments on two H&E-to-IHC stain translation datasets, namely MIST and BCI, demonstrate that the proposed method achieves state-of-the-art performance across multiple metrics.