Abstract:As large language models (LLMs) continue to develop and gain widespread application, the ability of LLMs to exhibit empathy towards diverse group identities and understand their perspectives is increasingly recognized as critical. Most existing benchmarks for empathy evaluation of LLMs focus primarily on universal human emotions, such as sadness and pain, often overlooking the context of individuals' group identities. To address this gap, we introduce GIEBench, a comprehensive benchmark that includes 11 identity dimensions, covering 97 group identities with a total of 999 single-choice questions related to specific group identities. GIEBench is designed to evaluate the empathy of LLMs when presented with specific group identities such as gender, age, occupation, and race, emphasizing their ability to respond from the standpoint of the identified group. This supports the ongoing development of empathetic LLM applications tailored to users with different identities. Our evaluation of 23 LLMs revealed that while these LLMs understand different identity standpoints, they fail to consistently exhibit equal empathy across these identities without explicit instructions to adopt those perspectives. This highlights the need for improved alignment of LLMs with diverse values to better accommodate the multifaceted nature of human identities. Our datasets are available at https://github.com/GIEBench/GIEBench.
Abstract:Quantum Convolutional Layer (QCL) is considered as one of the core of Quantum Convolutional Neural Networks (QCNNs) due to its efficient data feature extraction capability. However, the current principle of QCL is not as mathematically understandable as Classical Convolutional Layer (CCL) due to its black-box structure. Moreover, classical data mapping in many QCLs is inefficient. To this end, firstly, the Quantum Adjoint Convolution Operation (QACO) consisting of a quantum amplitude encoding and its inverse is theoretically shown to be equivalent to the quantum normalization of the convolution operation based on the Frobenius inner product while achieving an efficient characterization of the data. Subsequently, QACO is extended into a Quantum Adjoint Convolutional Layer (QACL) by Quantum Phase Estimation (QPE) to compute all Frobenius inner products in parallel. At last, comparative simulation experiments are carried out on PennyLane and TensorFlow platforms, mainly for the two cases of kernel fixed and unfixed in QACL. The results demonstrate that QACL with the insight of special quantum properties for the same images, provides higher training accuracy in MNIST and Fashion MNIST classification experiments, but sacrifices the learning performance to some extent. Predictably, our research lays the foundation for the development of efficient and interpretable quantum convolutional networks and also advances the field of quantum machine vision.
Abstract:Metaphor is a prominent linguistic device in human language and literature, as they add color, imagery, and emphasis to enhance effective communication. This paper introduces a large-scale high quality annotated Chinese Metaphor Corpus, which comprises around 28K sentences drawn from a diverse range of Chinese literary sources, such as poems, prose, song lyrics, etc. To ensure the accuracy and consistency of our annotations, we introduce a comprehensive set of guidelines. These guidelines address the facets of metaphor annotation, including identifying tenors, vehicles, and grounds to handling the complexities of similes, personifications, juxtapositions, and hyperboles. Breaking tradition, our approach to metaphor generation emphasizes grounds and their distinct features rather than the conventional combination of tenors and vehicles. By integrating "ground" as a CoT (Chain of Thoughts) input, we are able to generate metaphors that resonate more with real-world intuition. We test generative models such as Belle, Baichuan, and Chinese-alpaca-33B using our annotated corpus. These models are able to generate creative and fluent metaphor sentences more frequently induced by selected samples from our dataset, demonstrating the value of our corpus for Chinese metaphor research. The code is available in https://github.com/JasonShao55/Chinese_Metaphor_Explanation.
Abstract:Most open-domain dialogue systems suffer from forgetting important information, especially in a long-term conversation. Existing works usually train the specific retriever or summarizer to obtain key information from the past, which is time-consuming and highly depends on the quality of labeled data. To alleviate this problem, we propose to recursively generate summaries/ memory using large language models (LLMs) to enhance long-term memory ability. Specifically, our method first stimulates LLMs to memorize small dialogue contexts and then recursively produce new memory using previous memory and following contexts. Finally, the LLM can easily generate a highly consistent response with the help of the latest memory. We evaluate our method using ChatGPT and text-davinci-003, and the experiments on the widely-used public dataset show that our method can generate more consistent responses in a long-context conversation. Notably, our method is a potential solution to enable the LLM to model the extremely long context. Code and scripts will be released later.
Abstract:In the era of extensive intersection between art and Artificial Intelligence (AI), such as image generation and fiction co-creation, AI for music remains relatively nascent, particularly in music understanding. This is evident in the limited work on deep music representations, the scarcity of large-scale datasets, and the absence of a universal and community-driven benchmark. To address this issue, we introduce the Music Audio Representation Benchmark for universaL Evaluation, termed MARBLE. It aims to provide a benchmark for various Music Information Retrieval (MIR) tasks by defining a comprehensive taxonomy with four hierarchy levels, including acoustic, performance, score, and high-level description. We then establish a unified protocol based on 14 tasks on 8 public-available datasets, providing a fair and standard assessment of representations of all open-sourced pre-trained models developed on music recordings as baselines. Besides, MARBLE offers an easy-to-use, extendable, and reproducible suite for the community, with a clear statement on copyright issues on datasets. Results suggest recently proposed large-scale pre-trained musical language models perform the best in most tasks, with room for further improvement. The leaderboard and toolkit repository are published at https://marble-bm.shef.ac.uk to promote future music AI research.
Abstract:Zero-shot transfer learning for Dialogue State Tracking (DST) helps to handle a variety of task-oriented dialogue domains without the cost of collecting in-domain data. Existing works mainly study common data- or model-level augmentation methods to enhance the generalization but fail to effectively decouple the semantics of samples, limiting the zero-shot performance of DST. In this paper, we present a simple and effective "divide, conquer and combine" solution, which explicitly disentangles the semantics of seen data, and leverages the performance and robustness with the mixture-of-experts mechanism. Specifically, we divide the seen data into semantically independent subsets and train corresponding experts, the newly unseen samples are mapped and inferred with mixture-of-experts with our designed ensemble inference. Extensive experiments on MultiWOZ2.1 upon the T5-Adapter show our schema significantly and consistently improves the zero-shot performance, achieving the SOTA on settings without external knowledge, with only 10M trainable parameters1.
Abstract:Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.
Abstract:As natural language processing (NLP) for gender bias becomes a significant interdisciplinary topic, the prevalent data-driven techniques such as large-scale language models suffer from data inadequacy and biased corpus, especially for languages with insufficient resources such as Chinese. To this end, we propose a Chinese cOrpus foR Gender bIas Probing and Mitigation CORGI-PM, which contains 32.9k sentences with high-quality labels derived by following an annotation scheme specifically developed for gender bias in the Chinese context. Moreover, we address three challenges for automatic textual gender bias mitigation, which requires the models to detect, classify, and mitigate textual gender bias. We also conduct experiments with state-of-the-art language models to provide baselines. To our best knowledge, CORGI-PM is the first sentence-level Chinese corpus for gender bias probing and mitigation.
Abstract:International Classification of Diseases (ICD) is a set of classification codes for medical records. Automated ICD coding, which assigns unique International Classification of Diseases codes with each medical record, is widely used recently for its efficiency and error-prone avoidance. However, there are challenges that remain such as heterogeneity, label unbalance, and complex relationships between ICD codes. In this work, we proposed a novel Bidirectional Hierarchy Framework(HieNet) to address the challenges. Specifically, a personalized PageRank routine is developed to capture the co-relation of codes, a bidirectional hierarchy passage encoder to capture the codes' hierarchical representations, and a progressive predicting method is then proposed to narrow down the semantic searching space of prediction. We validate our method on two widely used datasets. Experimental results on two authoritative public datasets demonstrate that our proposed method boosts state-of-the-art performance by a large margin.
Abstract:Recently, neural language representation models pre-trained on large corpus can capture rich co-occurrence information and be fine-tuned in downstream tasks to improve the performance. As a result, they have achieved state-of-the-art results in a large range of language tasks. However, there exists other valuable semantic information such as similar, opposite, or other possible meanings in external knowledge graphs (KGs). We argue that entities in KGs could be used to enhance the correct semantic meaning of language sentences. In this paper, we propose a new method CKG: Dynamic Representation Based on \textbf{C}ontext and \textbf{K}nowledge \textbf{G}raph. On the one side, CKG can extract rich semantic information of large corpus. On the other side, it can make full use of inside information such as co-occurrence in large corpus and outside information such as similar entities in KGs. We conduct extensive experiments on a wide range of tasks, including QQP, MRPC, SST-5, SQuAD, CoNLL 2003, and SNLI. The experiment results show that CKG achieves SOTA 89.2 on SQuAD compared with SAN (84.4), ELMo (85.8), and BERT$_{Base}$ (88.5).