Abstract:Enabling Large Language Models (LLMs) to handle a wider range of complex tasks (e.g., coding, math) has drawn great attention from many researchers. As LLMs continue to evolve, merely increasing the number of model parameters yields diminishing performance improvements and heavy computational costs. Recently, OpenAI's o1 model has shown that inference strategies (i.e., Test-time Compute methods) can also significantly enhance the reasoning capabilities of LLMs. However, the mechanisms behind these methods are still unexplored. In our work, to investigate the reasoning patterns of o1, we compare o1 with existing Test-time Compute methods (BoN, Step-wise BoN, Agent Workflow, and Self-Refine) by using OpenAI's GPT-4o as a backbone on general reasoning benchmarks in three domains (i.e., math, coding, commonsense reasoning). Specifically, first, our experiments show that the o1 model has achieved the best performance on most datasets. Second, as for the methods of searching diverse responses (e.g., BoN), we find the reward models' capability and the search space both limit the upper boundary of these methods. Third, as for the methods that break the problem into many sub-problems, the Agent Workflow has achieved better performance than Step-wise BoN due to the domain-specific system prompt for planning better reasoning processes. Fourth, it is worth mentioning that we have summarized six reasoning patterns of o1, and provided a detailed analysis on several reasoning benchmarks.
Abstract:In this paper, we introduce MIO, a novel foundation model built on multimodal tokens, capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner. While the emergence of large language models (LLMs) and multimodal large language models (MM-LLMs) propels advancements in artificial general intelligence through their versatile capabilities, they still lack true any-to-any understanding and generation. Recently, the release of GPT-4o has showcased the remarkable potential of any-to-any LLMs for complex real-world tasks, enabling omnidirectional input and output across images, speech, and text. However, it is closed-source and does not support the generation of multimodal interleaved sequences. To address this gap, we present MIO, which is trained on a mixture of discrete tokens across four modalities using causal multimodal modeling. MIO undergoes a four-stage training process: (1) alignment pre-training, (2) interleaved pre-training, (3) speech-enhanced pre-training, and (4) comprehensive supervised fine-tuning on diverse textual, visual, and speech tasks. Our experimental results indicate that MIO exhibits competitive, and in some cases superior, performance compared to previous dual-modal baselines, any-to-any model baselines, and even modality-specific baselines. Moreover, MIO demonstrates advanced capabilities inherent to its any-to-any feature, such as interleaved video-text generation, chain-of-visual-thought reasoning, visual guideline generation, instructional image editing, etc.
Abstract:With the remarkable success achieved by Multimodal Large Language Models (MLLMs), numerous benchmarks have been designed to assess MLLMs' ability to guide their development in image perception tasks (e.g., image captioning and visual question answering). However, the existence of numerous benchmarks results in a substantial computational burden when evaluating model performance across all of them. Moreover, these benchmarks contain many overly simple problems or challenging samples, which do not effectively differentiate the capabilities among various MLLMs. To address these challenges, we propose a pipeline to process the existing benchmarks, which consists of two modules: (1) Semi-Automated Screening Process and (2) Eliminating Answer Leakage. The Semi-Automated Screening Process filters out samples that cannot distinguish the model's capabilities by synthesizing various MLLMs and manually evaluating them. The Eliminate Answer Leakage module filters samples whose answers can be inferred without images. Finally, we curate the LIME-M: Less Is More for Evaluation of Multimodal LLMs, a lightweight Multimodal benchmark that can more effectively evaluate the performance of different models. Our experiments demonstrate that: LIME-M can better distinguish the performance of different MLLMs with fewer samples (24% of the original) and reduced time (23% of the original); LIME-M eliminates answer leakage, focusing mainly on the information within images; The current automatic metric (i.e., CIDEr) is insufficient for evaluating MLLMs' capabilities in captioning. Moreover, removing the caption task score when calculating the overall score provides a more accurate reflection of model performance differences. All our codes and data are released at https://github.com/kangreen0210/LIME-M.
Abstract:In recent years, foundation models (FMs) such as large language models (LLMs) and latent diffusion models (LDMs) have profoundly impacted diverse sectors, including music. This comprehensive review examines state-of-the-art (SOTA) pre-trained models and foundation models in music, spanning from representation learning, generative learning and multimodal learning. We first contextualise the significance of music in various industries and trace the evolution of AI in music. By delineating the modalities targeted by foundation models, we discover many of the music representations are underexplored in FM development. Then, emphasis is placed on the lack of versatility of previous methods on diverse music applications, along with the potential of FMs in music understanding, generation and medical application. By comprehensively exploring the details of the model pre-training paradigm, architectural choices, tokenisation, finetuning methodologies and controllability, we emphasise the important topics that should have been well explored, like instruction tuning and in-context learning, scaling law and emergent ability, as well as long-sequence modelling etc. A dedicated section presents insights into music agents, accompanied by a thorough analysis of datasets and evaluations essential for pre-training and downstream tasks. Finally, by underscoring the vital importance of ethical considerations, we advocate that following research on FM for music should focus more on such issues as interpretability, transparency, human responsibility, and copyright issues. The paper offers insights into future challenges and trends on FMs for music, aiming to shape the trajectory of human-AI collaboration in the music realm.
Abstract:This paper presents the results of the shared task on Chinese metaphor generation, hosted at the 13th CCF Conference on Natural Language Processing and Chinese Computing (NLPCC 2024). The goal of this shared task is to generate Chinese metaphors using machine learning techniques and effectively identifying basic components of metaphorical sentences. It is divided into two subtasks: 1) Metaphor Generation, which involves creating a metaphor from a provided tuple consisting of TENOR, GROUND, and VEHICLE. The goal here is to synthesize a metaphor that connects the subject (i.e. TENOR) with the object (i.e. VEHICLE), guided by the concept of the GROUND. 2) Metaphor Components Identification, which extracts the most fitting TENORs, GROUNDs, and VEHICLEs from a metaphorical sentence. This component requires the identification of the most fitting metaphor elements that correspond to the specified grounds. In addition to overall results, we report on the setup and insights from the metaphor generation shared task, which attracted a total of 4 participating teams across both subtasks.
Abstract:Given the remarkable success that large visual language models (LVLMs) have achieved in image perception tasks, the endeavor to make LVLMs perceive the world like humans is drawing increasing attention. Current multi-modal benchmarks primarily focus on facts or specific topic-related knowledge contained within individual images. However, they often overlook the associative relations between multiple images, which require the identification and analysis of similarities among entities or content present in different images. Therefore, we propose the multi-image relation association task and a meticulously curated Multi-granularity Multi-image Relational Association (MMRA) benchmark, comprising 1,024 samples. In order to systematically and comprehensively evaluate current LVLMs, we establish an associational relation system among images that contain 11 subtasks (e.g, UsageSimilarity, SubEvent) at two granularity levels (i.e., image and entity) according to the relations in ConceptNet. Our experiments reveal that on the MMRA benchmark, current multi-image LVLMs exhibit distinct advantages and disadvantages across various subtasks. Notably, fine-grained, entity-level multi-image perception tasks pose a greater challenge for LVLMs compared to image-level tasks. Moreover, LVLMs perform poorly on spatial-related tasks, indicating that LVLMs still have limited spatial awareness. Additionally, our findings indicate that while LVLMs demonstrate a strong capability to perceive image details, enhancing their ability to associate information across multiple images hinges on improving the reasoning capabilities of their language model component. Moreover, we explored the ability of LVLMs to perceive image sequences within the context of our multi-image association task. Our experiments show that the majority of current LVLMs do not adequately model image sequences during the pre-training process.
Abstract:Given the remarkable success that large visual language models (LVLMs) have achieved in image perception tasks, the endeavor to make LVMLs perceive the world like humans is drawing increasing attention. Current multi-modal benchmarks mainly focus on the objective fact or certain topic related potential knowledge within a image, but overlook the associative relations between multiple images. Therefore, we define a multi-image relation association task, and meticulously curate \textbf{MMRA} benchmark, a \textbf{M}ulti-granularity \textbf{M}ulti-image \textbf{R}elational \textbf{A}ssociation benchmark, consisted of \textbf{1026} samples. In order to systematically and comprehensively evaluate mainstream LVLMs, we establish an associational relation system among images that contain \textbf{11 subtasks} (e.g, UsageSimilarity, SubEvent, etc.) at two granularity levels (i.e., "\textbf{image}" and "\textbf{entity}") according to the relations in ConceptNet. Our experiments demonstrate that, on our MMRA benchmark, current mainstream LVLMs all have their own advantages and disadvantages across different subtasks. It is worth noting that, at the entity level, the performance of all models is worse than that of them at the image level, indicating that the fine-grained multi-image perception task is still challenging for LVLMs. The tasks related to spatial perception are relatively difficult for LVLMs to handle. Furthermore, we find that LVMLs exhibit a good ability to perceive image details, and the key to enhancing their multi-image association capability is to strengthen the reasoning ability of their language model component. All our codes and data are released at htt\url{https://github.com/Wusiwei0410/MMRA}.
Abstract:General-purpose artificial intelligence (AI) systems are built on massive swathes of public web data, assembled into corpora such as C4, RefinedWeb, and Dolma. To our knowledge, we conduct the first, large-scale, longitudinal audit of the consent protocols for the web domains underlying AI training corpora. Our audit of 14,000 web domains provides an expansive view of crawlable web data and how codified data use preferences are changing over time. We observe a proliferation of AI-specific clauses to limit use, acute differences in restrictions on AI developers, as well as general inconsistencies between websites' expressed intentions in their Terms of Service and their robots.txt. We diagnose these as symptoms of ineffective web protocols, not designed to cope with the widespread re-purposing of the internet for AI. Our longitudinal analyses show that in a single year (2023-2024) there has been a rapid crescendo of data restrictions from web sources, rendering ~5%+ of all tokens in C4, or 28%+ of the most actively maintained, critical sources in C4, fully restricted from use. For Terms of Service crawling restrictions, a full 45% of C4 is now restricted. If respected or enforced, these restrictions are rapidly biasing the diversity, freshness, and scaling laws for general-purpose AI systems. We hope to illustrate the emerging crises in data consent, for both developers and creators. The foreclosure of much of the open web will impact not only commercial AI, but also non-commercial AI and academic research.
Abstract:With the recent advances of large language models (LLMs), it is no longer infeasible to build an automated debate system that helps people to synthesise persuasive arguments. Previous work attempted this task by integrating multiple components. In our work, we introduce an argument mining dataset that captures the end-to-end process of preparing an argumentative essay for a debate, which covers the tasks of claim and evidence identification (Task 1 ED), evidence convincingness ranking (Task 2 ECR), argumentative essay summarisation and human preference ranking (Task 3 ASR) and metric learning for automated evaluation of resulting essays, based on human feedback along argument quality dimensions (Task 4 SQE). Our dataset contains 14k examples of claims that are fully annotated with the various properties supporting the aforementioned tasks. We evaluate multiple generative baselines for each of these tasks, including representative LLMs. We find, that while they show promising results on individual tasks in our benchmark, their end-to-end performance on all four tasks in succession deteriorates significantly, both in automated measures as well as in human-centred evaluation. This challenge presented by our proposed dataset motivates future research on end-to-end argument mining and summarisation. The repository of this project is available at https://github.com/HarrywillDr/ArgSum-Datatset
Abstract:Large Language Models (LLMs) have made great strides in recent years to achieve unprecedented performance across different tasks. However, due to commercial interest, the most competitive models like GPT, Gemini, and Claude have been gated behind proprietary interfaces without disclosing the training details. Recently, many institutions have open-sourced several strong LLMs like LLaMA-3, comparable to existing closed-source LLMs. However, only the model's weights are provided with most details (e.g., intermediate checkpoints, pre-training corpus, and training code, etc.) being undisclosed. To improve the transparency of LLMs, the research community has formed to open-source truly open LLMs (e.g., Pythia, Amber, OLMo), where more details (e.g., pre-training corpus and training code) are being provided. These models have greatly advanced the scientific study of these large models including their strengths, weaknesses, biases and risks. However, we observe that the existing truly open LLMs on reasoning, knowledge, and coding tasks are still inferior to existing state-of-the-art LLMs with similar model sizes. To this end, we open-source MAP-Neo, a highly capable and transparent bilingual language model with 7B parameters trained from scratch on 4.5T high-quality tokens. Our MAP-Neo is the first fully open-sourced bilingual LLM with comparable performance compared to existing state-of-the-art LLMs. Moreover, we open-source all details to reproduce our MAP-Neo, where the cleaned pre-training corpus, data cleaning pipeline, checkpoints, and well-optimized training/evaluation framework are provided. Finally, we hope our MAP-Neo will enhance and strengthen the open research community and inspire more innovations and creativities to facilitate the further improvements of LLMs.