Carnegie Mellon University
Abstract:In this paper, we present NEMO, a system that translates Natural-language descriptions of decision problems into formal Executable Mathematical Optimization implementations, operating collaboratively with users or autonomously. Existing approaches typically rely on specialized large language models (LLMs) or bespoke, task-specific agents. Such methods are often brittle, complex and frequently generating syntactically invalid or non-executable code. NEMO instead centers on remote interaction with autonomous coding agents (ACAs), treated as a first-class abstraction analogous to API-based interaction with LLMs. This design enables the construction of higher-level systems around ACAs that structure, consolidate, and iteratively refine task specifications. Because ACAs execute within sandboxed environments, code produced by NEMO is executable by construction, allowing automated validation and repair. Building on this, we introduce novel coordination patterns with and across ACAs, including asymmetric validation loops between independently generated optimizer and simulator implementations (serving as a high-level validation mechanism), external memory for experience reuse, and robustness enhancements via minimum Bayes risk (MBR) decoding and self-consistency. We evaluate NEMO on nine established optimization benchmarks. As depicted in Figure 1, it achieves state-of-the-art performance on the majority of tasks, with substantial margins on several datasets, demonstrating the power of execution-aware agentic architectures for automated optimization modeling.
Abstract:When asked a question in a language less seen in its training data, current reasoning large language models (RLMs) often exhibit dramatically lower performance than when asked the same question in English. In response, we introduce \texttt{SP3F} (Self-Play with Privileged Pairwise Feedback), a two-stage framework for enhancing multilingual reasoning without \textit{any} data in the target language(s). First, we supervise fine-tune (SFT) on translated versions of English question-answer pairs to raise base model correctness. Second, we perform RL with feedback from a pairwise judge in a self-play fashion, with the judge receiving the English reference response as \textit{privileged information}. Thus, even when none of the model's responses are completely correct, the privileged pairwise judge can still tell which response is better. End-to-end, \texttt{SP3F} greatly improves base model performance, even outperforming fully post-trained models on multiple math and non-math tasks with less than of the training data across the single-language, multilingual, and generalization to unseen language settings.
Abstract:Automated interlinear gloss prediction with neural networks is a promising approach to accelerate language documentation efforts. However, while state-of-the-art models like GlossLM achieve high scores on glossing benchmarks, user studies with linguists have found critical barriers to the usefulness of such models in real-world scenarios. In particular, existing models typically generate morpheme-level glosses but assign them to whole words without predicting the actual morpheme boundaries, making the predictions less interpretable and thus untrustworthy to human annotators. We conduct the first study on neural models that jointly predict interlinear glosses and the corresponding morphological segmentation from raw text. We run experiments to determine the optimal way to train models that balance segmentation and glossing accuracy, as well as the alignment between the two tasks. We extend the training corpus of GlossLM and pretrain PolyGloss, a family of seq2seq multilingual models for joint segmentation and glossing that outperforms GlossLM on glossing and beats various open-source LLMs on segmentation, glossing, and alignment. In addition, we demonstrate that PolyGloss can be quickly adapted to a new dataset via low-rank adaptation.
Abstract:Prior works on training software engineering agents have explored utilizing existing resources such as issues on GitHub repositories to construct software engineering tasks and corresponding test suites. These approaches face two key limitations: (1) their reliance on pre-existing GitHub repositories offers limited flexibility, and (2) their primary focus on issue resolution tasks restricts their applicability to the much wider variety of tasks a software engineer must handle. To overcome these challenges, we introduce SWE-Playground, a novel pipeline for generating environments and trajectories which supports the training of versatile coding agents. Unlike prior efforts, SWE-Playground synthetically generates projects and tasks from scratch with strong language models and agents, eliminating reliance on external data sources. This allows us to tackle a much wider variety of coding tasks, such as reproducing issues by generating unit tests and implementing libraries from scratch. We demonstrate the effectiveness of this approach on three distinct benchmarks, and results indicate that SWE-Playground produces trajectories with dense training signal, enabling agents to reach comparable performance with significantly fewer trajectories than previous works.
Abstract:Recent reinforcement learning (RL) techniques have yielded impressive reasoning improvements in language models, yet it remains unclear whether post-training truly extends a model's reasoning ability beyond what it acquires during pre-training. A central challenge is the lack of control in modern training pipelines: large-scale pre-training corpora are opaque, mid-training is often underexamined, and RL objectives interact with unknown prior knowledge in complex ways. To resolve this ambiguity, we develop a fully controlled experimental framework that isolates the causal contributions of pre-training, mid-training, and RL-based post-training. Our approach employs synthetic reasoning tasks with explicit atomic operations, parseable step-by-step reasoning traces, and systematic manipulation of training distributions. We evaluate models along two axes: extrapolative generalization to more complex compositions and contextual generalization across surface contexts. Using this framework, we reconcile competing views on RL's effectiveness. We show that: 1) RL produces true capability gains (pass@128) only when pre-training leaves sufficient headroom and when RL data target the model's edge of competence, tasks at the boundary that are difficult but not yet out of reach. 2) Contextual generalization requires minimal yet sufficient pre-training exposure, after which RL can reliably transfer. 3) Mid-training significantly enhances performance under fixed compute compared with RL only, demonstrating its central but underexplored role in training pipelines. 4) Process-level rewards reduce reward hacking and improve reasoning fidelity. Together, these results clarify the interplay between pre-training, mid-training, and RL, offering a foundation for understanding and improving reasoning LM training strategies.
Abstract:Periodic human activities with implicit workflows are common in manufacturing, sports, and daily life. While short-term periodic activities -- characterized by simple structures and high-contrast patterns -- have been widely studied, long-term periodic workflows with low-contrast patterns remain largely underexplored. To bridge this gap, we introduce the first benchmark comprising 580 multimodal human activity sequences featuring long-term periodic workflows. The benchmark supports three evaluation tasks aligned with real-world applications: unsupervised periodic workflow detection, task completion tracking, and procedural anomaly detection. We also propose a lightweight, training-free baseline for modeling diverse periodic workflow patterns. Experiments show that: (i) our benchmark presents significant challenges to both unsupervised periodic detection methods and zero-shot approaches based on powerful large language models (LLMs); (ii) our baseline outperforms competing methods by a substantial margin in all evaluation tasks; and (iii) in real-world applications, our baseline demonstrates deployment advantages on par with traditional supervised workflow detection approaches, eliminating the need for annotation and retraining. Our project page is https://sites.google.com/view/periodicworkflow.




Abstract:Agents are now used widely in the process of software development, but building production-ready software engineering agents is a complex task. Deploying software agents effectively requires flexibility in implementation and experimentation, reliable and secure execution, and interfaces for users to interact with agents. In this paper, we present the OpenHands Software Agent SDK, a toolkit for implementing software development agents that satisfy these desiderata. This toolkit is a complete architectural redesign of the agent components of the popular OpenHands framework for software development agents, which has 64k+ GitHub stars. To achieve flexibility, we design a simple interface for implementing agents that requires only a few lines of code in the default case, but is easily extensible to more complex, full-featured agents with features such as custom tools, memory management, and more. For security and reliability, it delivers seamless local-to-remote execution portability, integrated REST/WebSocket services. For interaction with human users, it can connect directly to a variety of interfaces, such as visual workspaces (VS Code, VNC, browser), command-line interfaces, and APIs. Compared with existing SDKs from OpenAI, Claude, and Google, OpenHands uniquely integrates native sandboxed execution, lifecycle control, model-agnostic multi-LLM routing, and built-in security analysis. Empirical results on SWE-Bench Verified and GAIA benchmarks demonstrate strong performance. Put together, these elements allow the OpenHands Software Agent SDK to provide a practical foundation for prototyping, unlocking new classes of custom applications, and reliably deploying agents at scale.
Abstract:Real-world language agents must handle complex, multi-step workflows across diverse Apps. For instance, an agent may manage emails by coordinating with calendars and file systems, or monitor a production database to detect anomalies and generate reports following an operating manual. However, existing language agent benchmarks often focus on narrow domains or simplified tasks that lack the diversity, realism, and long-horizon complexity required to evaluate agents' real-world performance. To address this gap, we introduce the Tool Decathlon (dubbed as Toolathlon), a benchmark for language agents offering diverse Apps and tools, realistic environment setup, and reliable execution-based evaluation. Toolathlon spans 32 software applications and 604 tools, ranging from everyday platforms such as Google Calendar and Notion to professional ones like WooCommerce, Kubernetes, and BigQuery. Most of the tools are based on a high-quality set of Model Context Protocol (MCP) servers that we may have revised or implemented ourselves. Unlike prior works, which primarily ensure functional realism but offer limited environment state diversity, we provide realistic initial environment states from real software, such as Canvas courses with dozens of students or real financial spreadsheets. This benchmark includes 108 manually sourced or crafted tasks in total, requiring interacting with multiple Apps over around 20 turns on average to complete. Each task is strictly verifiable through dedicated evaluation scripts. Comprehensive evaluation of SOTA models highlights their significant shortcomings: the best-performing model, Claude-4.5-Sonnet, achieves only a 38.6% success rate with 20.2 tool calling turns on average, while the top open-weights model DeepSeek-V3.2-Exp reaches 20.1%. We expect Toolathlon to drive the development of more capable language agents for real-world, long-horizon task execution.
Abstract:AI agents are continually optimized for tasks related to human work, such as software engineering and professional writing, signaling a pressing trend with significant impacts on the human workforce. However, these agent developments have often not been grounded in a clear understanding of how humans execute work, to reveal what expertise agents possess and the roles they can play in diverse workflows. In this work, we study how agents do human work by presenting the first direct comparison of human and agent workers across multiple essential work-related skills: data analysis, engineering, computation, writing, and design. To better understand and compare heterogeneous computer-use activities of workers, we introduce a scalable toolkit to induce interpretable, structured workflows from either human or agent computer-use activities. Using such induced workflows, we compare how humans and agents perform the same tasks and find that: (1) While agents exhibit promise in their alignment to human workflows, they take an overwhelmingly programmatic approach across all work domains, even for open-ended, visually dependent tasks like design, creating a contrast with the UI-centric methods typically used by humans. (2) Agents produce work of inferior quality, yet often mask their deficiencies via data fabrication and misuse of advanced tools. (3) Nonetheless, agents deliver results 88.3% faster and cost 90.4-96.2% less than humans, highlighting the potential for enabling efficient collaboration by delegating easily programmable tasks to agents.
Abstract:This paper introduces MERLIN, a novel testbed system for the task of Multilingual Multimodal Entity Linking. The created dataset includes BBC news article titles, paired with corresponding images, in five languages: Hindi, Japanese, Indonesian, Vietnamese, and Tamil, featuring over 7,000 named entity mentions linked to 2,500 unique Wikidata entities. We also include several benchmarks using multilingual and multimodal entity linking methods exploring different language models like LLaMa-2 and Aya-23. Our findings indicate that incorporating visual data improves the accuracy of entity linking, especially for entities where the textual context is ambiguous or insufficient, and particularly for models that do not have strong multilingual abilities. For the work, the dataset, methods are available here at https://github.com/rsathya4802/merlin