Abstract:We present Semantic Interpreter, a natural language-friendly AI system for productivity software such as Microsoft Office that leverages large language models (LLMs) to execute user intent across application features. While LLMs are excellent at understanding user intent expressed as natural language, they are not sufficient for fulfilling application-specific user intent that requires more than text-to-text transformations. We therefore introduce the Office Domain Specific Language (ODSL), a concise, high-level language specialized for performing actions in and interacting with entities in Office applications. Semantic Interpreter leverages an Analysis-Retrieval prompt construction method with LLMs for program synthesis, translating natural language user utterances to ODSL programs that can be transpiled to application APIs and then executed. We focus our discussion primarily on a research exploration for Microsoft PowerPoint.
Abstract:We present SLATE, a sequence labeling approach for extracting tasks from free-form content such as digitally handwritten (or "inked") notes on a virtual whiteboard. Our approach allows us to create a single, low-latency model to simultaneously perform sentence segmentation and classification of these sentences into task/non-task sentences. SLATE greatly outperforms a baseline two-model (sentence segmentation followed by classification model) approach, achieving a task F1 score of 84.4%, a sentence segmentation (boundary similarity) score of 88.4% and three times lower latency compared to the baseline. Furthermore, we provide insights into tackling challenges of performing NLP on the inking domain. We release both our code and dataset for this novel task.
Abstract:Database engines have historically absorbed many of the innovations in data processing, adding features to process graph data, XML, object oriented, and text among many others. In this paper, we make the case that it is time to do the same for AI -- but with a twist! While existing approaches have tried to achieve this by integrating databases with external ML tools, in this paper we claim that achieving a truly AI-centric database requires moving the DBMS engine, at its core, from a relational to a tensor abstraction. This allows us to: (1) support multi-modal data processing such as images, videos, audio, text as well as relational; (2) leverage the wellspring of innovation in HW and runtimes for tensor computation; and (3) exploit automatic differentiation to enable a novel class of "trainable" queries that can learn to perform a task. To support the above scenarios, we introduce TDP: a system that builds upon our prior work mapping relational queries to tensors. Thanks to a tighter integration with the tensor runtime, TDP is able to provide a broader coverage of new emerging scenarios requiring access to multi-modal data and automatic differentiation.
Abstract:This work uses adversarial perturbations to enhance deepfake images and fool common deepfake detectors. We created adversarial perturbations using the Fast Gradient Sign Method and the Carlini and Wagner L2 norm attack in both blackbox and whitebox settings. Detectors achieved over 95% accuracy on unperturbed deepfakes, but less than 27% accuracy on perturbed deepfakes. We also explore two improvements to deepfake detectors: (i) Lipschitz regularization, and (ii) Deep Image Prior (DIP). Lipschitz regularization constrains the gradient of the detector with respect to the input in order to increase robustness to input perturbations. The DIP defense removes perturbations using generative convolutional neural networks in an unsupervised manner. Regularization improved the detection of perturbed deepfakes on average, including a 10% accuracy boost in the blackbox case. The DIP defense achieved 95% accuracy on perturbed deepfakes that fooled the original detector, while retaining 98% accuracy in other cases on a 100 image subsample.