Abstract:As 5G technology becomes increasingly established, the anticipation for 6G is growing, which promises to deliver faster and more reliable wireless connections via cutting-edge radio technologies. However, efficient management method of the large-scale antenna arrays deployed by those radio technologies is crucial. Traditional management methods are mainly reactive, usually based on feedback from users to adapt to the dynamic wireless channel. However, a more promising approach lies in the prediction of spatial channel state information (spatial-CSI), which is an all-inclusive channel characterization and consists of all the feasible line-of-sight (LoS) and non-line-of-sight (NLoS) paths between the transmitter (Tx) and receiver (Rx), with the three-dimension (3D) trajectory, attenuation, phase shift, delay, and polarization of each path. Advances in hardware and neural networks make it possible to predict such spatial-CSI using precise environmental information, and further look into the possibility of holographic communication, which implies complete control over every aspect of the radio waves emitted. Based on the integration of holographic communication and digital twin, we proposed a new framework, digital radio twin, which takes advantages from both the digital world and deterministic control over radio waves, supporting a wide range of high-level applications. As a preliminary attempt towards this visionary direction, in this paper, we explore the use of generative artificial intelligence (AI) to pinpoint the valid paths in a given environment, demonstrating promising results, and highlighting the potential of this approach in driving forward the evolution of 6G wireless communication technologies.
Abstract:Urban vehicle-to-vehicle (V2V) link scheduling with shared spectrum is a challenging problem. Its main goal is to find the scheduling policy that can maximize system performance (usually the sum capacity of each link or their energy efficiency). Given that each link can experience interference from all other active links, the scheduling becomes a combinatorial integer programming problem and generally does not scale well with the number of V2V pairs. Moreover, link scheduling requires accurate channel state information (CSI), which is very difficult to estimate with good accuracy under high vehicle mobility. In this paper, we propose an end-to-end urban V2V link scheduling method called Map2Schedule, which can directly generate V2V scheduling policy from the city map and vehicle locations. Map2Schedule delivers comparable performance to the physical-model-based methods in urban settings while maintaining low computation complexity. This enhanced performance is achieved by machine learning (ML) technologies. Specifically, we first deploy the convolutional neural network (CNN) model to estimate the CSI from street layout and vehicle locations and then apply the graph embedding model for optimal scheduling policy. The results show that the proposed method can achieve high accuracy with much lower overhead and latency.
Abstract:Database engines have historically absorbed many of the innovations in data processing, adding features to process graph data, XML, object oriented, and text among many others. In this paper, we make the case that it is time to do the same for AI -- but with a twist! While existing approaches have tried to achieve this by integrating databases with external ML tools, in this paper we claim that achieving a truly AI-centric database requires moving the DBMS engine, at its core, from a relational to a tensor abstraction. This allows us to: (1) support multi-modal data processing such as images, videos, audio, text as well as relational; (2) leverage the wellspring of innovation in HW and runtimes for tensor computation; and (3) exploit automatic differentiation to enable a novel class of "trainable" queries that can learn to perform a task. To support the above scenarios, we introduce TDP: a system that builds upon our prior work mapping relational queries to tensors. Thanks to a tighter integration with the tensor runtime, TDP is able to provide a broader coverage of new emerging scenarios requiring access to multi-modal data and automatic differentiation.
Abstract:An independent ethical assessment of an artificial intelligence system is an impartial examination of the system's development, deployment, and use in alignment with ethical values. System-level qualitative frameworks that describe high-level requirements and component-level quantitative metrics that measure individual ethical dimensions have been developed over the past few years. However, there exists a gap between the two, which hinders the execution of independent ethical assessments in practice. This study bridges this gap and designs a holistic independent ethical assessment process for a text classification model with a special focus on the task of hate speech detection. The assessment is further augmented with protected attributes mining and counterfactual-based analysis to enhance bias assessment. It covers assessments of technical performance, data bias, embedding bias, classification bias, and interpretability. The proposed process is demonstrated through an assessment of a deep hate speech detection model.