Abstract:This study addresses a task designed to predict the future success or failure of open-vocabulary object manipulation. In this task, the model is required to make predictions based on natural language instructions, egocentric view images before manipulation, and the given end-effector trajectories. Conventional methods typically perform success prediction only after the manipulation is executed, limiting their efficiency in executing the entire task sequence. We propose a novel approach that enables the prediction of success or failure by aligning the given trajectories and images with natural language instructions. We introduce Trajectory Encoder to apply learnable weighting to the input trajectories, allowing the model to consider temporal dynamics and interactions between objects and the end effector, improving the model's ability to predict manipulation outcomes accurately. We constructed a dataset based on the RT-1 dataset, a large-scale benchmark for open-vocabulary object manipulation tasks, to evaluate our method. The experimental results show that our method achieved a higher prediction accuracy than baseline approaches.
Abstract:This study addresses a task designed to predict the future success or failure of open-vocabulary object manipulation. In this task, the model is required to make predictions based on natural language instructions, egocentric view images before manipulation, and the given end-effector trajectories. Conventional methods typically perform success prediction only after the manipulation is executed, limiting their efficiency in executing the entire task sequence. We propose a novel approach that enables the prediction of success or failure by aligning the given trajectories and images with natural language instructions. We introduce Trajectory Encoder to apply learnable weighting to the input trajectories, allowing the model to consider temporal dynamics and interactions between objects and the end effector, improving the model's ability to predict manipulation outcomes accurately. We constructed a dataset based on the RT-1 dataset, a large-scale benchmark for open-vocabulary object manipulation tasks, to evaluate our method. The experimental results show that our method achieved a higher prediction accuracy than baseline approaches.
Abstract:Growing labor shortages are increasing the demand for domestic service robots (DSRs) to assist in various settings. In this study, we develop a DSR that transports everyday objects to specified pieces of furniture based on open-vocabulary instructions. Our approach focuses on retrieving images of target objects and receptacles from pre-collected images of indoor environments. For example, given an instruction "Please get the right red towel hanging on the metal towel rack and put it in the white washing machine on the left," the DSR is expected to carry the red towel to the washing machine based on the retrieved images. This is challenging because the correct images should be retrieved from thousands of collected images, which may include many images of similar towels and appliances. To address this, we propose RelaX-Former, which learns diverse and robust representations from among positive, unlabeled positive, and negative samples. We evaluated RelaX-Former on a dataset containing real-world indoor images and human annotated instructions including complex referring expressions. The experimental results demonstrate that RelaX-Former outperformed existing baseline models across standard image retrieval metrics. Moreover, we performed physical experiments using a DSR to evaluate the performance of our approach in a zero-shot transfer setting. The experiments involved the DSR to carry objects to specific receptacles based on open-vocabulary instructions, achieving an overall success rate of 75%.
Abstract:In this study, we consider the problem of predicting task success for open-vocabulary manipulation by a manipulator, based on instruction sentences and egocentric images before and after manipulation. Conventional approaches, including multimodal large language models (MLLMs), often fail to appropriately understand detailed characteristics of objects and/or subtle changes in the position of objects. We propose Contrastive $\lambda$-Repformer, which predicts task success for table-top manipulation tasks by aligning images with instruction sentences. Our method integrates the following three key types of features into a multi-level aligned representation: features that preserve local image information; features aligned with natural language; and features structured through natural language. This allows the model to focus on important changes by looking at the differences in the representation between two images. We evaluate Contrastive $\lambda$-Repformer on a dataset based on a large-scale standard dataset, the RT-1 dataset, and on a physical robot platform. The results show that our approach outperformed existing approaches including MLLMs. Our best model achieved an improvement of 8.66 points in accuracy compared to the representative MLLM-based model.
Abstract:In this work, we address the challenge of developing automatic evaluation metrics for image captioning, with a particular focus on robustness against hallucinations. Existing metrics are often inadequate for handling hallucinations, primarily due to their limited ability to compare candidate captions with multifaceted reference captions. To address this shortcoming, we propose DENEB, a novel supervised automatic evaluation metric specifically robust against hallucinations. DENEB incorporates the Sim-Vec Transformer, a mechanism that processes multiple references simultaneously, thereby efficiently capturing the similarity between an image, a candidate caption, and reference captions. To train DENEB, we construct the diverse and balanced Nebula dataset comprising 32,978 images, paired with human judgments provided by 805 annotators. We demonstrated that DENEB achieves state-of-the-art performance among existing LLM-free metrics on the FOIL, Composite, Flickr8K-Expert, Flickr8K-CF, Nebula, and PASCAL-50S datasets, validating its effectiveness and robustness against hallucinations.
Abstract:In this study, we aim to develop a domestic service robot (DSR) that, guided by open-vocabulary instructions, can carry everyday objects to the specified pieces of furniture. Few existing methods handle mobile manipulation tasks with open-vocabulary instructions in the image retrieval setting, and most do not identify both the target objects and the receptacles. We propose the Dual-Mode Multimodal Ranking model (DM2RM), which enables images of both the target objects and receptacles to be retrieved using a single model based on multimodal foundation models. We introduce a switching mechanism that leverages a mode token and phrase identification via a large language model to switch the embedding space based on the prediction target. To evaluate the DM2RM, we construct a novel dataset including real-world images collected from hundreds of building-scale environments and crowd-sourced instructions with referring expressions. The evaluation results show that the proposed DM2RM outperforms previous approaches in terms of standard metrics in image retrieval settings. Furthermore, we demonstrate the application of the DM2RM on a standardized real-world DSR platform including fetch-and-carry actions, where it achieves a task success rate of 82% despite the zero-shot transfer setting. Demonstration videos, code, and more materials are available at https://kkrr10.github.io/dm2rm/.
Abstract:Domestic service robots (DSRs) that support people in everyday environments have been widely investigated. However, their ability to predict and describe future risks resulting from their own actions remains insufficient. In this study, we focus on the linguistic explainability of DSRs. Most existing methods do not explicitly model the region of possible collisions; thus, they do not properly generate descriptions of these regions. In this paper, we propose the Nearest Neighbor Future Captioning Model that introduces the Nearest Neighbor Language Model for future captioning of possible collisions, which enhances the model output with a nearest neighbors retrieval mechanism. Furthermore, we introduce the Collision Attention Module that attends regions of possible collisions, which enables our model to generate descriptions that adequately reflect the objects associated with possible collisions. To validate our method, we constructed a new dataset containing samples of collisions that can occur when a DSR places an object in a simulation environment. The experimental results demonstrated that our method outperformed baseline methods, based on the standard metrics. In particular, on CIDEr-D, the baseline method obtained 25.09 points, whereas our method obtained 33.08 points.
Abstract:The transparent formulation of explanation methods is essential for elucidating the predictions of neural networks, which are typically black-box models. Layer-wise Relevance Propagation (LRP) is a well-established method that transparently traces the flow of a model's prediction backward through its architecture by backpropagating relevance scores. However, the conventional LRP does not fully consider the existence of skip connections, and thus its application to the widely used ResNet architecture has not been thoroughly explored. In this study, we extend LRP to ResNet models by introducing Relevance Splitting at points where the output from a skip connection converges with that from a residual block. Our formulation guarantees the conservation property throughout the process, thereby preserving the integrity of the generated explanations. To evaluate the effectiveness of our approach, we conduct experiments on ImageNet and the Caltech-UCSD Birds-200-2011 dataset. Our method achieves superior performance to that of baseline methods on standard evaluation metrics such as the Insertion-Deletion score while maintaining its conservation property. We will release our code for further research at https://5ei74r0.github.io/lrp-for-resnet.page/
Abstract:Rearranging objects (e.g. vase, door) back in their original positions is one of the most fundamental skills for domestic service robots (DSRs). In rearrangement tasks, it is crucial to detect the objects that need to be rearranged according to the goal and current states. In this study, we focus on Rearrangement Target Detection (RTD), where the model generates a change mask for objects that should be rearranged. Although many studies have been conducted in the field of Scene Change Detection (SCD), most SCD methods often fail to segment objects with complex shapes and fail to detect the change in the angle of objects that can be opened or closed. In this study, we propose a Co-Scale Cross-Attentional Transformer for RTD. We introduce the Serial Encoder which consists of a sequence of serial blocks and the Cross-Attentional Encoder which models the relationship between the goal and current states. We built a new dataset consisting of RGB images and change masks regarding the goal and current states. We validated our method on the dataset and the results demonstrated that our method outperformed baseline methods on $F_1$-score and mean IoU.
Abstract:We consider the task of generating segmentation masks for the target object from an object manipulation instruction, which allows users to give open vocabulary instructions to domestic service robots. Conventional segmentation generation approaches often fail to account for objects outside the camera's field of view and cases in which the order of vertices differs but still represents the same polygon, which leads to erroneous mask generation. In this study, we propose a novel method that generates segmentation masks from open vocabulary instructions. We implement a novel loss function using optimal transport to prevent significant loss where the order of vertices differs but still represents the same polygon. To evaluate our approach, we constructed a new dataset based on the REVERIE dataset and Matterport3D dataset. The results demonstrated the effectiveness of the proposed method compared with existing mask generation methods. Remarkably, our best model achieved a +16.32% improvement on the dataset compared with a representative polygon-based method.