Abstract:In this work, we investigate how a model's tendency to broadly integrate its parametric knowledge evolves throughout pretraining, and how this behavior affects overall performance, particularly in terms of knowledge acquisition and forgetting. We introduce the concept of knowledge entropy, which quantifies the range of memory sources the model engages with; high knowledge entropy indicates that the model utilizes a wide range of memory sources, while low knowledge entropy suggests reliance on specific sources with greater certainty. Our analysis reveals a consistent decline in knowledge entropy as pretraining advances. We also find that the decline is closely associated with a reduction in the model's ability to acquire and retain knowledge, leading us to conclude that diminishing knowledge entropy (smaller number of active memory sources) impairs the model's knowledge acquisition and retention capabilities. We find further support for this by demonstrating that increasing the activity of inactive memory sources enhances the model's capacity for knowledge acquisition and retention.
Abstract:As language models (LMs) become capable of handling a wide range of tasks, their evaluation is becoming as challenging as their development. Most generation benchmarks currently assess LMs using abstract evaluation criteria like helpfulness and harmlessness, which often lack the flexibility and granularity of human assessment. Additionally, these benchmarks tend to focus disproportionately on specific capabilities such as instruction following, leading to coverage bias. To overcome these limitations, we introduce the BiGGen Bench, a principled generation benchmark designed to thoroughly evaluate nine distinct capabilities of LMs across 77 diverse tasks. A key feature of the BiGGen Bench is its use of instance-specific evaluation criteria, closely mirroring the nuanced discernment of human evaluation. We apply this benchmark to assess 103 frontier LMs using five evaluator LMs. Our code, data, and evaluation results are all publicly available at https://github.com/prometheus-eval/prometheus-eval/tree/main/BiGGen-Bench.
Abstract:Training on large amounts of rationales (i.e., CoT Fine-tuning) is effective at improving the reasoning capabilities of large language models (LLMs). However, acquiring human-authored rationales or augmenting rationales from proprietary models is costly and not scalable. In this paper, we study the problem of whether LLMs could self-improve their reasoning capabilities. To this end, we propose Self-Explore, where the LLM is tasked to explore the first wrong step (i.e., the first pit) within the rationale and use such signals as fine-grained rewards for further improvement. On the GSM8K and MATH test set, Self-Explore achieves 11.57% and 2.89% improvement on average across three LLMs compared to supervised fine-tuning (SFT). Our code is available at https://github.com/hbin0701/Self-Explore.
Abstract:Evaluation of Large Language Models (LLMs) is challenging because aligning to human values requires the composition of multiple skills and the required set of skills varies depending on the instruction. Recent studies have evaluated the performance of LLMs in two ways, (1) automatic evaluation on several independent benchmarks and (2) human or machined-based evaluation giving an overall score to the response. However, both settings are coarse-grained evaluations, not considering the nature of user instructions that require instance-wise skill composition, which limits the interpretation of the true capabilities of LLMs. In this paper, we introduce FLASK (Fine-grained Language Model Evaluation based on Alignment SKill Sets), a fine-grained evaluation protocol that can be used for both model-based and human-based evaluation which decomposes coarse-level scoring to an instance-wise skill set-level. Specifically, we define 12 fine-grained skills needed for LLMs to follow open-ended user instructions and construct an evaluation set by allocating a set of skills for each instance. Additionally, by annotating the target domains and difficulty level for each instance, FLASK provides a holistic view with a comprehensive analysis of a model's performance depending on skill, domain, and difficulty. Through using FLASK, we compare multiple open-sourced and proprietary LLMs and observe highly-correlated findings between model-based and human-based evaluations. FLASK enables developers to more accurately measure the model performance and how it can be improved by analyzing factors that make LLMs proficient in particular skills. For practitioners, FLASK can be used to recommend suitable models for particular situations through comprehensive comparison among various LLMs. We release the evaluation data and code implementation at https://github.com/kaistAI/FLASK.
Abstract:Instruction learning of Large Language Models (LLMs) has enabled zero-shot task generalization. However, instruction learning has been predominantly approached as a fine-tuning problem, including instruction tuning and reinforcement learning from human feedback, where LLMs are multi-task fine-tuned on various tasks with instructions. In this paper, we present a surprising finding that applying in-context learning to instruction learning, referred to as In-Context Instruction Learning (ICIL), significantly improves the zero-shot task generalization performance for both pretrained and instruction-fine-tuned models. One of the core advantages of ICIL is that it uses a single fixed prompt to evaluate all tasks, which is a concatenation of cross-task demonstrations. In particular, we demonstrate that the most powerful instruction-fine-tuned baseline (text-davinci-003) also benefits from ICIL by 9.3%, indicating that the effect of ICIL is complementary to instruction-based fine-tuning.
Abstract:We propose Medical Entity Definition-based Sentence Embedding (MED-SE), a novel unsupervised contrastive learning framework designed for clinical texts, which exploits the definitions of medical entities. To this end, we conduct an extensive analysis of multiple sentence embedding techniques in clinical semantic textual similarity (STS) settings. In the entity-centric setting that we have designed, MED-SE achieves significantly better performance, while the existing unsupervised methods including SimCSE show degraded performance. Our experiments elucidate the inherent discrepancies between the general- and clinical-domain texts, and suggest that entity-centric contrastive approaches may help bridge this gap and lead to a better representation of clinical sentences.
Abstract:When it comes to wild conditions, Facial Expression Recognition is often challenged with low-quality data and imbalanced, ambiguous labels. This field has much benefited from CNN based approaches; however, CNN models have structural limitation to see the facial regions in distant. As a remedy, Transformer has been introduced to vision fields with global receptive field, but requires adjusting input spatial size to the pretrained models to enjoy their strong inductive bias at hands. We herein raise a question whether using the deterministic interpolation method is enough to feed low-resolution data to Transformer. In this work, we propose a novel training framework, Neural Resizer, to support Transformer by compensating information and downscaling in a data-driven manner trained with loss function balancing the noisiness and imbalance. Experiments show our Neural Resizer with F-PDLS loss function improves the performance with Transformer variants in general and nearly achieves the state-of-the-art performance.