Abstract:As language models (LMs) become capable of handling a wide range of tasks, their evaluation is becoming as challenging as their development. Most generation benchmarks currently assess LMs using abstract evaluation criteria like helpfulness and harmlessness, which often lack the flexibility and granularity of human assessment. Additionally, these benchmarks tend to focus disproportionately on specific capabilities such as instruction following, leading to coverage bias. To overcome these limitations, we introduce the BiGGen Bench, a principled generation benchmark designed to thoroughly evaluate nine distinct capabilities of LMs across 77 diverse tasks. A key feature of the BiGGen Bench is its use of instance-specific evaluation criteria, closely mirroring the nuanced discernment of human evaluation. We apply this benchmark to assess 103 frontier LMs using five evaluator LMs. Our code, data, and evaluation results are all publicly available at https://github.com/prometheus-eval/prometheus-eval/tree/main/BiGGen-Bench.
Abstract:Reliance on the inherent knowledge of Large Language Models (LLMs) can cause issues such as hallucinations, lack of control, and difficulties in integrating variable knowledge. To mitigate this, LLMs can be probed to generate responses by grounding on external context, often given as input (knowledge-augmented models). Yet, previous research is often confined to a narrow view of the term "grounding", often only focusing on whether the response contains the correct answer or not, which does not ensure the reliability of the entire response. To address this limitation, we introduce a strict definition of grounding: a model is considered truly grounded when its responses (1) fully utilize necessary knowledge from the provided context, and (2) don't exceed the knowledge within the contexts. We introduce a new dataset and a grounding metric to assess this new definition and perform experiments across 13 LLMs of different sizes and training methods to provide insights into the factors that influence grounding performance. Our findings contribute to a better understanding of how to improve grounding capabilities and suggest an area of improvement toward more reliable and controllable LLM applications.
Abstract:Generative retrieval has recently been gaining a lot of attention from the research community for its simplicity, high performance, and the ability to fully leverage the power of deep autoregressive models. However, prior work on generative retrieval has mostly investigated on static benchmarks, while realistic retrieval applications often involve dynamic environments where knowledge is temporal and accumulated over time. In this paper, we introduce a new benchmark called STREAMINGIR, dedicated to quantifying the generalizability of retrieval methods to dynamically changing corpora derived from StreamingQA, that simulates realistic retrieval use cases. On this benchmark, we conduct an in-depth comparative evaluation of bi-encoder and generative retrieval in terms of performance as well as efficiency under varying degree of supervision. Our results suggest that generative retrieval shows (1) detrimental performance when only supervised data is used for fine-tuning, (2) superior performance over bi-encoders when only unsupervised data is available, and (3) lower performance to bi-encoders when both unsupervised and supervised data is used due to catastrophic forgetting; nevertheless, we show that parameter-efficient measures can effectively mitigate the issue and result in competitive performance and efficiency with respect to the bi-encoder baseline. Our results open up a new potential for generative retrieval in practical dynamic environments. Our work will be open-sourced.