refer to the report for detailed contributions
Abstract:Recent advances in large language models have highlighted their potential for personalized recommendation, where accurately capturing user preferences remains a key challenge. Leveraging their strong reasoning and generalization capabilities, LLMs offer new opportunities for modeling long-term user behavior. To systematically evaluate this, we introduce ALPBench, a Benchmark for Attribution-level Long-term Personal Behavior Understanding. Unlike item-focused benchmarks, ALPBench predicts user-interested attribute combinations, enabling ground-truth evaluation even for newly introduced items. It models preferences from long-term historical behaviors rather than users' explicitly expressed requests, better reflecting enduring interests. User histories are represented as natural language sequences, allowing interpretable, reasoning-based personalization. ALPBench enables fine-grained evaluation of personalization by focusing on the prediction of attribute combinations task that remains highly challenging for current LLMs due to the need to capture complex interactions among multiple attributes and reason over long-term user behavior sequences.
Abstract:Existing face parsing methods usually misclassify occlusions as facial components. This is because occlusion is a high-level concept, it does not refer to a concrete category of object. Thus, constructing a real-world face dataset covering all categories of occlusion object is almost impossible and accurate mask annotation is labor-intensive. To deal with the problems, we present S$^3$POT, a contrast-driven framework synergizing face generation with self-supervised spatial prompting, to achieve occlusion segmentation. The framework is inspired by the insights: 1) Modern face generators' ability to realistically reconstruct occluded regions, creating an image that preserve facial geometry while eliminating occlusion, and 2) Foundation segmentation models' (e.g., SAM) capacity to extract precise mask when provided with appropriate prompts. In particular, S$^3$POT consists of three modules: Reference Generation (RF), Feature enhancement (FE), and Prompt Selection (PS). First, a reference image is produced by RF using structural guidance from parsed mask. Second, FE performs contrast of tokens between raw and reference images to obtain an initial prompt, then modifies image features with the prompt by cross-attention. Third, based on the enhanced features, PS constructs a set of positive and negative prompts and screens them with a self-attention network for a mask decoder. The network is learned under the guidance of three novel and complementary objective functions without occlusion ground truth mask involved. Extensive experiments on a dedicatedly collected dataset demonstrate S$^3$POT's superior performance and the effectiveness of each module.
Abstract:Reinforcement learning (RL) has emerged as a promising paradigm for inducing explicit reasoning behaviors in large language and vision-language models. However, reasoning-oriented RL post-training remains fundamentally challenging due to sparse trajectory-level rewards, leading to ambiguous credit assignment and severe exploration failures that can trap the policy in a ``learning cliff.'' Recent on-policy distillation methods introduce dense teacher supervision to stabilize optimization, but apply it uniformly across all generated trajectories. We argue that such uniform distillation is ill-suited for reasoning-intensive tasks, as low-quality on-policy trajectories often originate from early logical errors, and distillation under flawed contexts injects noisy and misaligned gradients. To address these challenges, we propose Knowledge-Enhanced Preference Optimization (KEPO), a unified post-training framework that integrates: (i) a quality-gated on-policy distillation objective that selectively applies dense teacher guidance only to high-quality trajectories, and (ii) a knowledge-enhanced exploration strategy that leverages hints learned from a teacher model to rejectively sample reward-positive on-policy trajectories for RL, thereby mitigating exploration collapse. Evaluated on a challenging medical visual question answering benchmark under single-source generalization, KEPO demonstrates improved training stability, more coherent reasoning behaviors, and superior out-of-distribution performance over reinforcement learning and on-policy distillation baselines.
Abstract:This brief proposes \emph{White-Op}, an interpretable operational amplifier (op-amp) parameter design framework based on the human-mimicking reasoning of large-language-model agents. We formalize the implicit human reasoning mechanism into explicit steps of \emph{\textbf{introducing hypothetical constraints}}, and develop an iterative, human-like \emph{\textbf{hypothesis-verification-decision}} workflow. Specifically, the agent is guided to introduce hypothetical constraints to derive and properly regulate positions of symbolically tractable poles and zeros, thus formulating a closed-form mathematical optimization problem, which is then solved programmatically and verified via simulation. Theory-simulation result analysis guides the decision-making for refinement. Experiments on 9 op-amp topologies show that, unlike the uninterpretable black-box baseline which finally fails in 5 topologies, White-Op achieves reliable, interpretable behavioral-level designs with only 8.52\% theoretical prediction error and the design functionality retains after transistor-level mapping for all topologies. White-Op is open-sourced at \textcolor{blue}{https://github.com/zhchenfdu/whiteop}.
Abstract:The central challenge in robotic manipulation of deformable objects lies in aligning high-level semantic instructions with physical interaction points under complex appearance and texture variations. Due to near-infinite degrees of freedom, complex dynamics, and heterogeneous patterns, existing vision-based affordance prediction methods often suffer from boundary overflow and fragmented functional regions. To address these issues, we propose TRACER, a Texture-Robust Affordance Chain-of-thought with dEformable-object Refinement framework, which establishes a cross-hierarchical mapping from hierarchical semantic reasoning to appearance-robust and physically consistent functional region refinement. Specifically, a Tree-structured Affordance Chain-of-Thought (TA-CoT) is formulated to decompose high-level task intentions into hierarchical sub-task semantics, providing consistent guidance across various execution stages. To ensure spatial integrity, a Spatial-Constrained Boundary Refinement (SCBR) mechanism is introduced to suppress prediction spillover, guiding the perceptual response to converge toward authentic interaction manifolds. Furthermore, an Interactive Convergence Refinement Flow (ICRF) is developed to aggregate discrete pixels corrupted by appearance noise, significantly enhancing the spatial continuity and physical plausibility of the identified functional regions. Extensive experiments conducted on the Fine-AGDDO15 dataset and a real-world robotic platform demonstrate that TRACER significantly improves affordance grounding precision across diverse textures and patterns inherent to deformable objects. More importantly, it enhances the success rate of long-horizon tasks, effectively bridging the gap between high-level semantic reasoning and low-level physical execution. The source code and dataset will be made publicly available at https://github.com/Dikay1/TRACER.
Abstract:As robots become increasingly integrated into daily life, understanding responses to robot mistreatment carries important ethical and design implications. This mixed-methods study (N = 201) examined how anthropomorphic levels and moral foundations shape reactions to robot abuse. Participants viewed videos depicting physical mistreatment of robots varying in humanness (Spider, Twofoot, Humanoid) and completed measures assessing moral foundations, anger, and social distance. Results revealed that anthropomorphism determines whether people extend moral consideration to robots, while moral foundations shape how they reason about such consideration. Qualitative analysis revealed distinct reasoning patterns: low-progressivism individuals employed character-based judgments, while high-progressivism individuals engaged in future-oriented moral deliberation. Findings offer implications for robot design and policy communication.
Abstract:Deep Neural Networks remain inherently vulnerable to backdoor attacks. Traditional test-time defenses largely operate under the paradigm of internal diagnosis methods like model repairing or input robustness, yet these approaches are often fragile under advanced attacks as they remain entangled with the victim model's corrupted parameters. We propose a paradigm shift from Internal Diagnosis to External Semantic Auditing, arguing that effective defense requires decoupling safety from the victim model via an independent, semantically grounded auditor. To this end, we present a framework harnessing Universal Vision-Language Models (VLMs) as evolving semantic gatekeepers. We introduce PRISM (Prototype Refinement & Inspection via Statistical Monitoring), which overcomes the domain gap of general VLMs through two key mechanisms: a Hybrid VLM Teacher that dynamically refines visual prototypes online, and an Adaptive Router powered by statistical margin monitoring to calibrate gating thresholds in real-time. Extensive evaluation across 17 datasets and 11 attack types demonstrates that PRISM achieves state-of-the-art performance, suppressing Attack Success Rate to <1% on CIFAR-10 while improving clean accuracy, establishing a new standard for model-agnostic, externalized security.
Abstract:Depth sensors are widely deployed across robotic platforms, and advances in fast, high-fidelity depth simulation have enabled robotic policies trained on depth observations to achieve robust sim-to-real transfer for a wide range of tasks. Despite this, representation learning for depth modality remains underexplored compared to RGB, where large-scale foundation models now define the state of the art. To address this gap, we present DeFM, a self-supervised foundation model trained entirely on depth images for robotic applications. Using a DINO-style self-distillation objective on a curated dataset of 60M depth images, DeFM learns geometric and semantic representations that generalize to diverse environments, tasks, and sensors. To retain metric awareness across multiple scales, we introduce a novel input normalization strategy. We further distill DeFM into compact models suitable for resource-constrained robotic systems. When evaluated on depth-based classification, segmentation, navigation, locomotion, and manipulation benchmarks, DeFM achieves state-of-the-art performance and demonstrates strong generalization from simulation to real-world environments. We release all our pretrained models, which can be adopted off-the-shelf for depth-based robotic learning without task-specific fine-tuning. Webpage: https://de-fm.github.io/
Abstract:A fundamental problem of applying Large Language Models (LLMs) to important applications is that LLMs do not always follow instructions, and violations are often hard to observe or check. In LLM-based agentic workflows, such violations can propagate and amplify along reasoning chains, causing task failures and system incidents. This paper presents NSVIF, a neuro-symbolic framework for verifying whether an LLM's output follows the instructions used to prompt the LLM. NSVIF is a universal, general-purpose verifier; it makes no assumption about the instruction or the LLM. NSVIF formulates instruction-following verification as a constraint-satisfaction problem by modeling user instructions as constraints. NSVIF models both logical and semantic constraints; constraint solving is done by a unified solver that orchestrates logical reasoning and semantic analysis. To evaluate NSVIF, we develop VIFBENCH, a new benchmark for instruction-following verifiers with fine-grained data labels. Experiments show that NSVIF significantly outperforms LLM-based approaches and provides interpretable feedback. We also show that feedback from NSVIF helps improve LLMs' instruction-following capability without post-training.
Abstract:Open-vocabulary 6D object pose estimation empowers robots to manipulate arbitrary unseen objects guided solely by natural language. However, a critical limitation of existing approaches is their reliance on unconstrained global matching strategies. In open-world scenarios, trying to match anchor features against the entire query image space introduces excessive ambiguity, as target features are easily confused with background distractors. To resolve this, we propose Fine-grained Correspondence Pose Estimation (FiCoP), a framework that transitions from noise-prone global matching to spatially-constrained patch-level correspondence. Our core innovation lies in leveraging a patch-to-patch correlation matrix as a structural prior to narrowing the matching scope, effectively filtering out irrelevant clutter to prevent it from degrading pose estimation. Firstly, we introduce an object-centric disentanglement preprocessing to isolate the semantic target from environmental noise. Secondly, a Cross-Perspective Global Perception (CPGP) module is proposed to fuse dual-view features, establishing structural consensus through explicit context reasoning. Finally, we design a Patch Correlation Predictor (PCP) that generates a precise block-wise association map, acting as a spatial filter to enforce fine-grained, noise-resilient matching. Experiments on the REAL275 and Toyota-Light datasets demonstrate that FiCoP improves Average Recall by 8.0% and 6.1%, respectively, compared to the state-of-the-art method, highlighting its capability to deliver robust and generalized perception for robotic agents operating in complex, unconstrained open-world environments. The source code will be made publicly available at https://github.com/zjjqinyu/FiCoP.