for the Alzheimer's Disease Neuroimaging Initiative
Abstract:Historically, scientific discovery has been a lengthy and costly process, demanding substantial time and resources from initial conception to final results. To accelerate scientific discovery, reduce research costs, and improve research quality, we introduce Agent Laboratory, an autonomous LLM-based framework capable of completing the entire research process. This framework accepts a human-provided research idea and progresses through three stages--literature review, experimentation, and report writing to produce comprehensive research outputs, including a code repository and a research report, while enabling users to provide feedback and guidance at each stage. We deploy Agent Laboratory with various state-of-the-art LLMs and invite multiple researchers to assess its quality by participating in a survey, providing human feedback to guide the research process, and then evaluate the final paper. We found that: (1) Agent Laboratory driven by o1-preview generates the best research outcomes; (2) The generated machine learning code is able to achieve state-of-the-art performance compared to existing methods; (3) Human involvement, providing feedback at each stage, significantly improves the overall quality of research; (4) Agent Laboratory significantly reduces research expenses, achieving an 84% decrease compared to previous autonomous research methods. We hope Agent Laboratory enables researchers to allocate more effort toward creative ideation rather than low-level coding and writing, ultimately accelerating scientific discovery.
Abstract:Text representation learning is significant as the cornerstone of natural language processing. In recent years, graph contrastive learning (GCL) has been widely used in text representation learning due to its ability to represent and capture complex text information in a self-supervised setting. However, current mainstream graph contrastive learning methods often require the incorporation of domain knowledge or cumbersome computations to guide the data augmentation process, which significantly limits the application efficiency and scope of GCL. Additionally, many methods learn text representations only by constructing word-document relationships, which overlooks the rich contextual semantic information in the text. To address these issues and exploit representative textual semantics, we present an event-based, simple, and effective graph contrastive learning (SE-GCL) for text representation. Precisely, we extract event blocks from text and construct internal relation graphs to represent inter-semantic interconnections, which can ensure that the most critical semantic information is preserved. Then, we devise a streamlined, unsupervised graph contrastive learning framework to leverage the complementary nature of the event semantic and structural information for intricate feature data capture. In particular, we introduce the concept of an event skeleton for core representation semantics and simplify the typically complex data augmentation techniques found in existing graph contrastive learning to boost algorithmic efficiency. We employ multiple loss functions to prompt diverse embeddings to converge or diverge within a confined distance in the vector space, ultimately achieving a harmonious equilibrium. We conducted experiments on the proposed SE-GCL on four standard data sets (AG News, 20NG, SougouNews, and THUCNews) to verify its effectiveness in text representation learning.
Abstract:Efficient image tokenization with high compression ratios remains a critical challenge for training generative models. We present SoftVQ-VAE, a continuous image tokenizer that leverages soft categorical posteriors to aggregate multiple codewords into each latent token, substantially increasing the representation capacity of the latent space. When applied to Transformer-based architectures, our approach compresses 256x256 and 512x512 images using as few as 32 or 64 1-dimensional tokens. Not only does SoftVQ-VAE show consistent and high-quality reconstruction, more importantly, it also achieves state-of-the-art and significantly faster image generation results across different denoising-based generative models. Remarkably, SoftVQ-VAE improves inference throughput by up to 18x for generating 256x256 images and 55x for 512x512 images while achieving competitive FID scores of 1.78 and 2.21 for SiT-XL. It also improves the training efficiency of the generative models by reducing the number of training iterations by 2.3x while maintaining comparable performance. With its fully-differentiable design and semantic-rich latent space, our experiment demonstrates that SoftVQ-VQE achieves efficient tokenization without compromising generation quality, paving the way for more efficient generative models. Code and model are released.
Abstract:Graph contrastive learning has been successfully applied in text classification due to its remarkable ability for self-supervised node representation learning. However, explicit graph augmentations may lead to a loss of semantics in the contrastive views. Secondly, existing methods tend to overlook edge features and the varying significance of node features during multi-graph learning. Moreover, the contrastive loss suffer from false negatives. To address these limitations, we propose a novel method of contrastive multi-graph learning with neighbor hierarchical sifting for semi-supervised text classification, namely ConNHS. Specifically, we exploit core features to form a multi-relational text graph, enhancing semantic connections among texts. By separating text graphs, we provide diverse views for contrastive learning. Our approach ensures optimal preservation of the graph information, minimizing data loss and distortion. Then, we separately execute relation-aware propagation and cross-graph attention propagation, which effectively leverages the varying correlations between nodes and edge features while harmonising the information fusion across graphs. Subsequently, we present the neighbor hierarchical sifting loss (NHS) to refine the negative selection. For one thing, following the homophily assumption, NHS masks first-order neighbors of the anchor and positives from being negatives. For another, NHS excludes the high-order neighbors analogous to the anchor based on their similarities. Consequently, it effectively reduces the occurrence of false negatives, preventing the expansion of the distance between similar samples in the embedding space. Our experiments on ThuCNews, SogouNews, 20 Newsgroups, and Ohsumed datasets achieved 95.86\%, 97.52\%, 87.43\%, and 70.65\%, which demonstrates competitive results in semi-supervised text classification.
Abstract:Optical flow estimation is extensively used in autonomous driving and video editing. While existing models demonstrate state-of-the-art performance across various benchmarks, the robustness of these methods has been infrequently investigated. Despite some research focusing on the robustness of optical flow models against adversarial attacks, there has been a lack of studies investigating their robustness to common corruptions. Taking into account the unique temporal characteristics of optical flow, we introduce 7 temporal corruptions specifically designed for benchmarking the robustness of optical flow models, in addition to 17 classical single-image corruptions, in which advanced PSF Blur simulation method is performed. Two robustness benchmarks, KITTI-FC and GoPro-FC, are subsequently established as the first corruption robustness benchmark for optical flow estimation, with Out-Of-Domain (OOD) and In-Domain (ID) settings to facilitate comprehensive studies. Robustness metrics, Corruption Robustness Error (CRE), Corruption Robustness Error ratio (CREr), and Relative Corruption Robustness Error (RCRE) are further introduced to quantify the optical flow estimation robustness. 29 model variants from 15 optical flow methods are evaluated, yielding 10 intriguing observations, such as 1) the absolute robustness of the model is heavily dependent on the estimation performance; 2) the corruptions that diminish local information are more serious than that reduce visual effects. We also give suggestions for the design and application of optical flow models. We anticipate that our benchmark will serve as a foundational resource for advancing research in robust optical flow estimation. The benchmarks and source code will be released at https://github.com/ZhonghuaYi/optical_flow_robustness_benchmark.
Abstract:Text-to-image diffusion models have demonstrated tremendous success in synthesizing visually stunning images given textual instructions. Despite remarkable progress in creating high-fidelity visuals, text-to-image models can still struggle with precisely rendering subjects, such as text spelling. To address this challenge, this paper explores using additional conditions of an image that provides visual guidance of the particular subjects for diffusion models to generate. In addition, this reference condition empowers the model to be conditioned in ways that the vocabularies of the text tokenizer cannot adequately represent, and further extends the model's generalization to novel capabilities such as generating non-English text spellings. We develop several small-scale expert plugins that efficiently endow a Stable Diffusion model with the capability to take different references. Each plugin is trained with auxiliary networks and loss functions customized for applications such as English scene-text generation, multi-lingual scene-text generation, and logo-image generation. Our expert plugins demonstrate superior results than the existing methods on all tasks, each containing only 28.55M trainable parameters.
Abstract:Event cameras, with high temporal resolution and high dynamic range, have limited research on the inter-modality local feature extraction and matching of event-image data. We propose EI-Nexus, an unmediated and flexible framework that integrates two modality-specific keypoint extractors and a feature matcher. To achieve keypoint extraction across viewpoint and modality changes, we bring Local Feature Distillation (LFD), which transfers the viewpoint consistency from a well-learned image extractor to the event extractor, ensuring robust feature correspondence. Furthermore, with the help of Context Aggregation (CA), a remarkable enhancement is observed in feature matching. We further establish the first two inter-modality feature matching benchmarks, MVSEC-RPE and EC-RPE, to assess relative pose estimation on event-image data. Our approach outperforms traditional methods that rely on explicit modal transformation, offering more unmediated and adaptable feature extraction and matching, achieving better keypoint similarity and state-of-the-art results on the MVSEC-RPE and EC-RPE benchmarks. The source code and benchmarks will be made publicly available at https://github.com/ZhonghuaYi/EI-Nexus_official.
Abstract:As Large Language Models (LLMs) become increasingly integrated into various facets of society, a significant portion of online text consequently become synthetic. This raises concerns about bias amplification, a phenomenon where models trained on synthetic data amplify the pre-existing biases over successive training iterations. Previous literature seldom discusses bias amplification as an independent issue from model collapse. In this work, we address the gap in understanding the bias amplification of LLMs with four main contributions. Firstly, we propose a theoretical framework, defining the necessary and sufficient conditions for its occurrence, and emphasizing that it occurs independently of model collapse. Using statistical simulations with weighted maximum likelihood estimation, we demonstrate the framework and show how bias amplification arises without the sampling and functional form issues that typically drive model collapse. Secondly, we conduct experiments with GPT-2 to empirically demonstrate bias amplification, specifically examining open-ended generational political bias with a benchmark we developed. We observe that GPT-2 exhibits a right-leaning bias in sentence continuation tasks and that the bias progressively increases with iterative fine-tuning on synthetic data generated by previous iterations. Thirdly, we explore three potential mitigation strategies: Overfitting, Preservation, and Accumulation. We find that both Preservation and Accumulation effectively mitigate bias amplification and model collapse. Finally, using novel mechanistic interpretation techniques, we demonstrate that in the GPT-2 experiments, bias amplification and model collapse are driven by distinct sets of neurons, which aligns with our theoretical framework.
Abstract:Graph contrastive learning (GCL) has been widely applied to text classification tasks due to its ability to generate self-supervised signals from unlabeled data, thus facilitating model training. However, existing GCL-based text classification methods often suffer from negative sampling bias, where similar nodes are incorrectly paired as negative pairs. This can lead to over-clustering, where instances of the same class are divided into different clusters. To address the over-clustering issue, we propose an innovative GCL-based method of graph contrastive learning via cluster-refined negative sampling for semi-supervised text classification, namely ClusterText. Firstly, we combine the pre-trained model Bert with graph neural networks to learn text representations. Secondly, we introduce a clustering refinement strategy, which clusters the learned text representations to obtain pseudo labels. For each text node, its negative sample set is drawn from different clusters. Additionally, we propose a self-correction mechanism to mitigate the loss of true negative samples caused by clustering inconsistency. By calculating the Euclidean distance between each text node and other nodes within the same cluster, distant nodes are still selected as negative samples. Our proposed ClusterText demonstrates good scalable computing, as it can effectively extract important information from from a large amount of data. Experimental results demonstrate the superiority of ClusterText in text classification tasks.
Abstract:Recent advancements in timestep-distilled diffusion models have enabled high-quality image generation that rivals non-distilled multi-step models, but with significantly fewer inference steps. While such models are attractive for applications due to the low inference cost and latency, fine-tuning them with a naive diffusion objective would result in degraded and blurry outputs. An intuitive alternative is to repeat the diffusion distillation process with a fine-tuned teacher model, which produces good results but is cumbersome and computationally intensive; the distillation training usually requires magnitude higher of training compute compared to fine-tuning for specific image styles. In this paper, we present an algorithm named pairwise sample optimization (PSO), which enables the direct fine-tuning of an arbitrary timestep-distilled diffusion model. PSO introduces additional reference images sampled from the current time-step distilled model, and increases the relative likelihood margin between the training images and reference images. This enables the model to retain its few-step generation ability, while allowing for fine-tuning of its output distribution. We also demonstrate that PSO is a generalized formulation which can be flexibly extended to both offline-sampled and online-sampled pairwise data, covering various popular objectives for diffusion model preference optimization. We evaluate PSO in both preference optimization and other fine-tuning tasks, including style transfer and concept customization. We show that PSO can directly adapt distilled models to human-preferred generation with both offline and online-generated pairwise preference image data. PSO also demonstrates effectiveness in style transfer and concept customization by directly tuning timestep-distilled diffusion models.