Abstract:Real-world applications of stereo matching, such as autonomous driving, place stringent demands on both safety and accuracy. However, learning-based stereo matching methods inherently suffer from the loss of geometric structures in certain feature channels, creating a bottleneck in achieving precise detail matching. Additionally, these methods lack interpretability due to the black-box nature of deep learning. In this paper, we propose MoCha-V2, a novel learning-based paradigm for stereo matching. MoCha-V2 introduces the Motif Correlation Graph (MCG) to capture recurring textures, which are referred to as ``motifs" within feature channels. These motifs reconstruct geometric structures and are learned in a more interpretable way. Subsequently, we integrate features from multiple frequency domains through wavelet inverse transformation. The resulting motif features are utilized to restore geometric structures in the stereo matching process. Experimental results demonstrate the effectiveness of MoCha-V2. MoCha-V2 achieved 1st place on the Middlebury benchmark at the time of its release. Code is available at https://github.com/ZYangChen/MoCha-Stereo.
Abstract:Learning-based stereo matching techniques have made significant progress. However, existing methods inevitably lose geometrical structure information during the feature channel generation process, resulting in edge detail mismatches. In this paper, the Motif Cha}nnel Attention Stereo Matching Network (MoCha-Stereo) is designed to address this problem. We provide the Motif Channel Correlation Volume (MCCV) to determine more accurate edge matching costs. MCCV is achieved by projecting motif channels, which capture common geometric structures in feature channels, onto feature maps and cost volumes. In addition, edge variations in %potential feature channels of the reconstruction error map also affect details matching, we propose the Reconstruction Error Motif Penalty (REMP) module to further refine the full-resolution disparity estimation. REMP integrates the frequency information of typical channel features from the reconstruction error. MoCha-Stereo ranks 1st on the KITTI-2015 and KITTI-2012 Reflective leaderboards. Our structure also shows excellent performance in Multi-View Stereo. Code is avaliable at https://github.com/ZYangChen/MoCha-Stereo.
Abstract:In recent years, the detection of infrared small targets using deep learning methods has garnered substantial attention due to notable advancements. To improve the detection capability of small targets, these methods commonly maintain a pathway that preserves high-resolution features of sparse and tiny targets. However, it can result in redundant and expensive computations. To tackle this challenge, we propose SpirDet, a novel approach for efficient detection of infrared small targets. Specifically, to cope with the computational redundancy issue, we employ a new dual-branch sparse decoder to restore the feature map. Firstly, the fast branch directly predicts a sparse map indicating potential small target locations (occupying only 0.5\% area of the map). Secondly, the slow branch conducts fine-grained adjustments at the positions indicated by the sparse map. Additionally, we design an lightweight DO-RepEncoder based on reparameterization with the Downsampling Orthogonality, which can effectively reduce memory consumption and inference latency. Extensive experiments show that the proposed SpirDet significantly outperforms state-of-the-art models while achieving faster inference speed and fewer parameters. For example, on the IRSTD-1K dataset, SpirDet improves $MIoU$ by 4.7 and has a $7\times$ $FPS$ acceleration compared to the previous state-of-the-art model. The code will be open to the public.
Abstract:Coronavirus disease 2019 (COVID-19) continues to pose a great challenge to the world since its outbreak. To fight against the disease, a series of artificial intelligence (AI) techniques are developed and applied to real-world scenarios such as safety monitoring, disease diagnosis, infection risk assessment, lesion segmentation of COVID-19 CT scans,etc. The coronavirus epidemics have forced people wear masks to counteract the transmission of virus, which also brings difficulties to monitor large groups of people wearing masks. In this paper, we primarily focus on the AI techniques of masked facial detection and related datasets. We survey the recent advances, beginning with the descriptions of masked facial detection datasets. Thirteen available datasets are described and discussed in details. Then, the methods are roughly categorized into two classes: conventional methods and neural network-based methods. Conventional methods are usually trained by boosting algorithms with hand-crafted features, which accounts for a small proportion. Neural network-based methods are further classified as three parts according to the number of processing stages. Representative algorithms are described in detail, coupled with some typical techniques that are described briefly. Finally, we summarize the recent benchmarking results, give the discussions on the limitations of datasets and methods, and expand future research directions. To our knowledge, this is the first survey about masked facial detection methods and datasets. Hopefully our survey could provide some help to fight against epidemics.