Abstract:Correspondence-based point cloud registration (PCR) plays a key role in robotics and computer vision. However, challenges like sensor noises, object occlusions, and descriptor limitations inevitably result in numerous outliers. RANSAC family is the most popular outlier removal solution. However, the requisite iterations escalate exponentially with the outlier ratio, rendering it far inferior to existing methods (SC2PCR [1], MAC [2], etc.) in terms of accuracy or speed. Thus, we propose a two-stage consensus filtering (TCF) that elevates RANSAC to state-of-the-art (SOTA) speed and accuracy. Firstly, one-point RANSAC obtains a consensus set based on length consistency. Subsequently, two-point RANSAC refines the set via angle consistency. Then, three-point RANSAC computes a coarse pose and removes outliers based on transformed correspondence's distances. Drawing on optimizations from one-point and two-point RANSAC, three-point RANSAC requires only a few iterations. Eventually, an iterative reweighted least squares (IRLS) is applied to yield the optimal pose. Experiments on the large-scale KITTI and ETH datasets demonstrate our method achieves up to three-orders-of-magnitude speedup compared to MAC while maintaining registration accuracy and recall. Our code is available at https://github.com/ShiPC-AI/TCF.
Abstract:The significance of background information is frequently overlooked in contemporary research concerning channel attention mechanisms. This study addresses the issue of suboptimal single-spectral nighttime pedestrian detection performance under low-light conditions by incorporating background information into the channel attention mechanism. Despite numerous studies focusing on the development of efficient channel attention mechanisms, the relevance of background information has been largely disregarded. By adopting a contrast learning approach, we reexamine channel attention with regard to pedestrian objects and background information for nighttime pedestrian detection, resulting in the proposed Fore-Background Contrast Attention (FBCA). FBCA possesses two primary attributes: (1) channel descriptors form remote dependencies with global spatial feature information; (2) the integration of background information enhances the distinction between channels concentrating on low-light pedestrian features and those focusing on background information. Consequently, the acquired channel descriptors exhibit a higher semantic level and spatial accuracy. Experimental outcomes demonstrate that FBCA significantly outperforms existing methods in single-spectral nighttime pedestrian detection, achieving state-of-the-art results on the NightOwls and TJU-DHD-pedestrian datasets. Furthermore, this methodology also yields performance improvements for the multispectral LLVIP dataset. These findings indicate that integrating background information into the channel attention mechanism effectively mitigates detector performance degradation caused by illumination factors in nighttime scenarios.
Abstract:This paper is the first to propose an end-to-end framework of mutually reinforcing images to 3D surface recurrent neural network-like for model-adaptation indoor 3D reconstruction,where multi-view dense matching and point cloud surface optimization are mutually reinforced by a RNN-like structure rather than being treated as a separate issue.The characteristics are as follows:In the multi-view dense matching module, the model-adaptation strategy is used to fine-tune and optimize a Transformer-based multi-view dense matching DNN,so that it has the higher image feature for matching and detail expression capabilities;In the point cloud surface optimization module,the 3D surface reconstruction network based on 3D implicit field is optimized by using model-adaptation strategy,which solves the problem of point cloud surface optimization without knowing normal vector of 3D surface.To improve and finely reconstruct 3D surfaces from point cloud,smooth loss is proposed and added to this module;The MRIo3DS-Net is a RNN-like framework,which utilizes the finely optimized 3D surface obtained by PCSOM to recursively reinforce the differentiable warping for optimizing MVDMM.This refinement leads to achieving better dense matching results, and better dense matching results leads to achieving better 3D surface results recursively and mutually.Hence, model-adaptation strategy can better collaborate the differences between the two network modules,so that they complement each other to achieve the better effect;To accelerate the transfer learning and training convergence from source domain to target domain,a multi-task loss function based on Bayesian uncertainty is used to adaptively adjust the weights between the two networks loss functions of MVDMM and PCSOM;In this multi-task cascade network framework,any modules can be replaced by any state-of-the-art networks to achieve better 3D reconstruction results.
Abstract:Remotely sensed image high-accuracy interpretation (RSIHI), including tasks such as semantic segmentation and change detection, faces the three major problems: (1) complementarity problem of spatially stationary-and-non-stationary frequency; (2) edge uncertainty problem caused by down-sampling in the encoder step and intrinsic edge noises; and (3) false detection problem caused by imagery registration error in change detection. To solve the aforementioned problems, an uncertainty-diffusion-model-based high-Frequency TransFormer network (UDHF2-Net) is the proposed for RSIHI, the superiority of which is as following: (1) a spatially-stationary-and-non-stationary high-frequency connection paradigm (SHCP) is proposed to enhance the interaction of spatially stationary and non-stationary frequency features to yield high-fidelity edge extraction result. Inspired by HRFormer, SHCP remains the high-frequency stream through the whole encoder-decoder process with parallel high-to-low frequency streams and reduces the edge loss by a downsampling operation; (2) a mask-and-geo-knowledge-based uncertainty diffusion module (MUDM) is proposed to improve the robustness and edge noise resistance. MUDM could further optimize the uncertain region to improve edge extraction result by gradually removing the multiple geo-knowledge-based noises; (3) a semi-pseudo-Siamese UDHF2-Net for change detection task is proposed to reduce the pseudo change by registration error. It adopts semi-pseudo-Siamese architecture to extract above complemental frequency features for adaptively reducing registration differencing, and MUDM to recover the uncertain region by gradually reducing the registration error besides above edge noises. Comprehensive experiments were performed to demonstrate the superiority of UDHF2-Net. Especially ablation experiments indicate the effectiveness of UDHF2-Net.
Abstract:Remote Sensing Large Multi-Modal Models (RSLMMs) are developing rapidly and showcase significant capabilities in remote sensing imagery (RSI) comprehension. However, due to the limitations of existing datasets, RSLMMs have shortcomings in understanding the rich semantic relations among objects in complex remote sensing scenes. To unlock RSLMMs' complex comprehension ability, we propose a large-scale instruction tuning dataset FIT-RS, containing 1,800,851 instruction samples. FIT-RS covers common interpretation tasks and innovatively introduces several complex comprehension tasks of escalating difficulty, ranging from relation reasoning to image-level scene graph generation. Based on FIT-RS, we build the FIT-RSFG benchmark. Furthermore, we establish a new benchmark to evaluate the fine-grained relation comprehension capabilities of LMMs, named FIT-RSRC. Based on combined instruction data, we propose SkySenseGPT, which achieves outstanding performance on both public datasets and FIT-RSFG, surpassing existing RSLMMs. We hope the FIT-RS dataset can enhance the relation comprehension capability of RSLMMs and provide a large-scale fine-grained data source for the remote sensing community. The dataset will be available at https://github.com/Luo-Z13/SkySenseGPT
Abstract:Scene graph generation (SGG) in satellite imagery (SAI) benefits promoting intelligent understanding of geospatial scenarios from perception to cognition. In SAI, objects exhibit great variations in scales and aspect ratios, and there exist rich relationships between objects (even between spatially disjoint objects), which makes it necessary to holistically conduct SGG in large-size very-high-resolution (VHR) SAI. However, the lack of SGG datasets with large-size VHR SAI has constrained the advancement of SGG in SAI. Due to the complexity of large-size VHR SAI, mining triplets <subject, relationship, object> in large-size VHR SAI heavily relies on long-range contextual reasoning. Consequently, SGG models designed for small-size natural imagery are not directly applicable to large-size VHR SAI. To address the scarcity of datasets, this paper constructs a large-scale dataset for SGG in large-size VHR SAI with image sizes ranging from 512 x 768 to 27,860 x 31,096 pixels, named RSG, encompassing over 210,000 objects and more than 400,000 triplets. To realize SGG in large-size VHR SAI, we propose a context-aware cascade cognition (CAC) framework to understand SAI at three levels: object detection (OBD), pair pruning and relationship prediction. As a fundamental prerequisite for SGG in large-size SAI, a holistic multi-class object detection network (HOD-Net) that can flexibly integrate multi-scale contexts is proposed. With the consideration that there exist a huge amount of object pairs in large-size SAI but only a minority of object pairs contain meaningful relationships, we design a pair proposal generation (PPG) network via adversarial reconstruction to select high-value pairs. Furthermore, a relationship prediction network with context-aware messaging (RPCM) is proposed to predict the relationship types of these pairs.
Abstract:Remote sensing semantic segmentation (RSS) is an essential task in Earth Observation missions. Due to data privacy concerns, high-quality remote sensing images with annotations cannot be well shared among institutions, making it difficult to fully utilize RSS data to train a generalized model. Federated Learning (FL), a privacy-preserving collaborative learning technology, is a potential solution. However, the current research on how to effectively apply FL in RSS is still scarce and requires further investigation. Remote sensing images in various institutions often exhibit strong geographical heterogeneity. More specifically, it is reflected in terms of class-distribution heterogeneity and object-appearance heterogeneity. Unfortunately, most existing FL studies show inadequate focus on geographical heterogeneity, thus leading to performance degradation in the global model. Considering the aforementioned issues, we propose a novel Geographic Heterogeneity-Aware Federated Learning (GeoFed) framework to address privacy-preserving RSS. Through Global Feature Extension and Tail Regeneration modules, class-distribution heterogeneity is alleviated. Additionally, we design an Essential Feature Mining strategy to alleviate object-appearance heterogeneity by constructing essential features. Extensive experiments on three datasets (i.e., FBP, CASID, Inria) show that our GeoFed consistently outperforms the current state-of-the-art methods. The code will be available publicly.
Abstract:Scene graph generation (SGG) aims to understand the visual objects and their semantic relationships from one given image. Until now, lots of SGG datasets with the eyelevel view are released but the SGG dataset with the overhead view is scarcely studied. By contrast to the object occlusion problem in the eyelevel view, which impedes the SGG, the overhead view provides a new perspective that helps to promote the SGG by providing a clear perception of the spatial relationships of objects in the ground scene. To fill in the gap of the overhead view dataset, this paper constructs and releases an aerial image urban scene graph generation (AUG) dataset. Images from the AUG dataset are captured with the low-attitude overhead view. In the AUG dataset, 25,594 objects, 16,970 relationships, and 27,175 attributes are manually annotated. To avoid the local context being overwhelmed in the complex aerial urban scene, this paper proposes one new locality-preserving graph convolutional network (LPG). Different from the traditional graph convolutional network, which has the natural advantage of capturing the global context for SGG, the convolutional layer in the LPG integrates the non-destructive initial features of the objects with dynamically updated neighborhood information to preserve the local context under the premise of mining the global context. To address the problem that there exists an extra-large number of potential object relationship pairs but only a small part of them is meaningful in AUG, we propose the adaptive bounding box scaling factor for potential relationship detection (ABS-PRD) to intelligently prune the meaningless relationship pairs. Extensive experiments on the AUG dataset show that our LPG can significantly outperform the state-of-the-art methods and the effectiveness of the proposed locality-preserving strategy.
Abstract:Learning-based stereo matching techniques have made significant progress. However, existing methods inevitably lose geometrical structure information during the feature channel generation process, resulting in edge detail mismatches. In this paper, the Motif Cha}nnel Attention Stereo Matching Network (MoCha-Stereo) is designed to address this problem. We provide the Motif Channel Correlation Volume (MCCV) to determine more accurate edge matching costs. MCCV is achieved by projecting motif channels, which capture common geometric structures in feature channels, onto feature maps and cost volumes. In addition, edge variations in %potential feature channels of the reconstruction error map also affect details matching, we propose the Reconstruction Error Motif Penalty (REMP) module to further refine the full-resolution disparity estimation. REMP integrates the frequency information of typical channel features from the reconstruction error. MoCha-Stereo ranks 1st on the KITTI-2015 and KITTI-2012 Reflective leaderboards. Our structure also shows excellent performance in Multi-View Stereo. Code is avaliable at https://github.com/ZYangChen/MoCha-Stereo.
Abstract:In recent years, the detection of infrared small targets using deep learning methods has garnered substantial attention due to notable advancements. To improve the detection capability of small targets, these methods commonly maintain a pathway that preserves high-resolution features of sparse and tiny targets. However, it can result in redundant and expensive computations. To tackle this challenge, we propose SpirDet, a novel approach for efficient detection of infrared small targets. Specifically, to cope with the computational redundancy issue, we employ a new dual-branch sparse decoder to restore the feature map. Firstly, the fast branch directly predicts a sparse map indicating potential small target locations (occupying only 0.5\% area of the map). Secondly, the slow branch conducts fine-grained adjustments at the positions indicated by the sparse map. Additionally, we design an lightweight DO-RepEncoder based on reparameterization with the Downsampling Orthogonality, which can effectively reduce memory consumption and inference latency. Extensive experiments show that the proposed SpirDet significantly outperforms state-of-the-art models while achieving faster inference speed and fewer parameters. For example, on the IRSTD-1K dataset, SpirDet improves $MIoU$ by 4.7 and has a $7\times$ $FPS$ acceleration compared to the previous state-of-the-art model. The code will be open to the public.