Abstract:Accurately mapping large-scale cropland is crucial for agricultural production management and planning. Currently, the combination of remote sensing data and deep learning techniques has shown outstanding performance in cropland mapping. However, those approaches require massive precise labels, which are labor-intensive. To reduce the label cost, this study presented a weakly supervised framework considering multi-temporal information for large-scale cropland mapping. Specifically, we extract high-quality labels according to their consistency among global land cover (GLC) products to construct the supervised learning signal. On the one hand, to alleviate the overfitting problem caused by the model's over-trust of remaining errors in high-quality labels, we encode the similarity/aggregation of cropland in the visual/spatial domain to construct the unsupervised learning signal, and take it as the regularization term to constrain the supervised part. On the other hand, to sufficiently leverage the plentiful information in the samples without high-quality labels, we also incorporate the unsupervised learning signal in these samples, enriching the diversity of the feature space. After that, to capture the phenological features of croplands, we introduce dense satellite image time series (SITS) to extend the proposed framework in the temporal dimension. We also visualized the high dimensional phenological features to uncover how multi-temporal information benefits cropland extraction, and assessed the method's robustness under conditions of data scarcity. The proposed framework has been experimentally validated for strong adaptability across three study areas (Hunan Province, Southeast France, and Kansas) in large-scale cropland mapping, and the internal mechanism and temporal generalizability are also investigated.
Abstract:End-to-end interpretation is currently the prevailing paradigm for remote sensing fine-grained ship classification (RS-FGSC) task. However, its inference process is uninterpretable, leading to criticism as a black box model. To address this issue, we propose a large vision-language model (LVLM) named IFShip for interpretable fine-grained ship classification. Unlike traditional methods, IFShip excels in interpretability by accurately conveying the reasoning process of FGSC in natural language. Specifically, we first design a domain knowledge-enhanced Chain-of-Thought (COT) prompt generation mechanism. This mechanism is used to semi-automatically construct a task-specific instruction-following dataset named TITANIC-FGS, which emulates human-like logical decision-making. We then train the IFShip model using task instructions tuned with the TITANIC-FGS dataset. Building on IFShip, we develop an FGSC visual chatbot that redefines the FGSC problem as a step-by-step reasoning task and conveys the reasoning process in natural language. Experimental results reveal that the proposed method surpasses state-of-the-art FGSC algorithms in both classification interpretability and accuracy. Moreover, compared to LVLMs like LLaVA and MiniGPT-4, our approach demonstrates superior expertise in the FGSC task. It provides an accurate chain of reasoning when fine-grained ship types are recognizable to the human eye and offers interpretable explanations when they are not.
Abstract:The tokenizer, as one of the fundamental components of large models, has long been overlooked or even misunderstood in visual tasks. One key factor of the great comprehension power of the large language model is that natural language tokenizers utilize meaningful words or subwords as the basic elements of language. In contrast, mainstream visual tokenizers, represented by patch-based methods such as Patch Embed, rely on meaningless rectangular patches as basic elements of vision, which cannot serve as effectively as words or subwords in language. Starting from the essence of the tokenizer, we defined semantically independent regions (SIRs) for vision. We designed a simple HOmogeneous visual tOKenizer: HOOK. HOOK mainly consists of two modules: the Object Perception Module (OPM) and the Object Vectorization Module (OVM). To achieve homogeneity, the OPM splits the image into 4*4 pixel seeds and then utilizes the attention mechanism to perceive SIRs. The OVM employs cross-attention to merge seeds within the same SIR. To achieve adaptability, the OVM defines a variable number of learnable vectors as cross-attention queries, allowing for the adjustment of token quantity. We conducted experiments on the NWPU-RESISC45, WHU-RS19 classification dataset, and GID5 segmentation dataset for sparse and dense tasks. The results demonstrate that the visual tokens obtained by HOOK correspond to individual objects, which demonstrates homogeneity. HOOK outperformed Patch Embed by 6\% and 10\% in the two tasks and achieved state-of-the-art performance compared to the baselines used for comparison. Compared to Patch Embed, which requires more than one hundred tokens for one image, HOOK requires only 6 and 8 tokens for sparse and dense tasks, respectively, resulting in efficiency improvements of 1.5 to 2.8 times. The code is available at https://github.com/GeoX-Lab/Hook.
Abstract:In the later training stages, further improvement of the models ability to determine changes relies on how well the change detection (CD) model learns hard cases; however, there are two additional challenges to learning hard case samples: (1) change labels are limited and tend to pointer only to foreground targets, yet hard case samples are prevalent in the background, which leads to optimizing the loss function focusing on the foreground targets and ignoring the background hard cases, which we call imbalance. (2) Complex situations, such as light shadows, target occlusion, and seasonal changes, induce hard case samples, and in the absence of both supervisory and scene information, it is difficult for the model to learn hard case samples directly to accurately obtain the feature representations of the change information, which we call missingness. We propose a Siamese foreground association-driven hard case sample optimization network (HSONet). To deal with this imbalance, we propose an equilibrium optimization loss function to regulate the optimization focus of the foreground and background, determine the hard case samples through the distribution of the loss values, and introduce dynamic weights in the loss term to gradually shift the optimization focus of the loss from the foreground to the background hard cases as the training progresses. To address this missingness, we understand hard case samples with the help of the scene context, propose the scene-foreground association module, use potential remote sensing spatial scene information to model the association between the target of interest in the foreground and the related context to obtain scene embedding, and apply this information to the feature reinforcement of hard cases. Experiments on four public datasets show that HSONet outperforms current state-of-the-art CD methods, particularly in detecting hard case samples.
Abstract:Data-driven deep learning methods have shown great potential in cropland mapping. However, due to multiple factors such as attributes of cropland (topography, climate, crop type) and imaging conditions (viewing angle, illumination, scale), croplands under different scenes demonstrate a great domain gap. This makes it difficult for models trained in the specific scenes to directly generalize to other scenes. A common way to handle this problem is through the "Pretrain+Fine-tuning" paradigm. Unfortunately, considering the variety of features of cropland that are affected by multiple factors, it is hardly to handle the complex domain gap between pre-trained data and target data using only sparse fine-tuned samples as general constraints. Moreover, as the number of model parameters grows, fine-tuning is no longer an easy and low-cost task. With the emergence of prompt learning via visual foundation models, the "Pretrain+Prompting" paradigm redesigns the optimization target by introducing individual prompts for each single sample. This simplifies the domain adaption from generic to specific scenes during model reasoning processes. Therefore, we introduce the "Pretrain+Prompting" paradigm to interpreting cropland scenes and design the auto-prompting (APT) method based on freely available global land cover product. It can achieve a fine-grained adaptation process from generic scenes to specialized cropland scenes without introducing additional label costs. To our best knowledge, this work pioneers the exploration of the domain adaption problems for cropland mapping under prompt learning perspectives. Our experiments using two sub-meter cropland datasets from southern and northern China demonstrated that the proposed method via visual foundation models outperforms traditional supervised learning and fine-tuning approaches in the field of remote sensing.
Abstract:Self-supervised contrastive learning (SSCL) has achieved significant milestones in remote sensing image (RSI) understanding. Its essence lies in designing an unsupervised instance discrimination pretext task to extract image features from a large number of unlabeled images that are beneficial for downstream tasks. However, existing instance discrimination based SSCL suffer from two limitations when applied to the RSI semantic segmentation task: 1) Positive sample confounding issue; 2) Feature adaptation bias. It introduces a feature adaptation bias when applied to semantic segmentation tasks that require pixel-level or object-level features. In this study, We observed that the discrimination information can be mapped to specific regions in RSI through the gradient of unsupervised contrastive loss, these specific regions tend to contain singular ground objects. Based on this, we propose contrastive learning with Gradient guided Sampling Strategy (GraSS) for RSI semantic segmentation. GraSS consists of two stages: Instance Discrimination warm-up (ID warm-up) and Gradient guided Sampling contrastive training (GS training). The ID warm-up aims to provide initial discrimination information to the contrastive loss gradients. The GS training stage aims to utilize the discrimination information contained in the contrastive loss gradients and adaptively select regions in RSI patches that contain more singular ground objects, in order to construct new positive and negative samples. Experimental results on three open datasets demonstrate that GraSS effectively enhances the performance of SSCL in high-resolution RSI semantic segmentation. Compared to seven baseline methods from five different types of SSCL, GraSS achieves an average improvement of 1.57\% and a maximum improvement of 3.58\% in terms of mean intersection over the union. The source code is available at https://github.com/GeoX-Lab/GraSS
Abstract:Deep learning has achieved great success in learning features from massive remote sensing images (RSIs). To better understand the connection between feature learning paradigms (e.g., unsupervised feature learning (USFL), supervised feature learning (SFL), and self-supervised feature learning (SSFL)), this paper analyzes and compares them from the perspective of feature learning signals, and gives a unified feature learning framework. Under this unified framework, we analyze the advantages of SSFL over the other two learning paradigms in RSIs understanding tasks and give a comprehensive review of the existing SSFL work in RS, including the pre-training dataset, self-supervised feature learning signals, and the evaluation methods. We further analyze the effect of SSFL signals and pre-training data on the learned features to provide insights for improving the RSI feature learning. Finally, we briefly discuss some open problems and possible research directions.
Abstract:The existing SSCL of RSI is built based on constructing positive and negative sample pairs. However, due to the richness of RSI ground objects and the complexity of the RSI contextual semantics, the same RSI patches have the coexistence and imbalance of positive and negative samples, which causing the SSCL pushing negative samples far away while pushing positive samples far away, and vice versa. We call this the sample confounding issue (SCI). To solve this problem, we propose a False negAtive sampLes aware contraStive lEarning model (FALSE) for the semantic segmentation of high-resolution RSIs. Since the SSCL pretraining is unsupervised, the lack of definable criteria for false negative sample (FNS) leads to theoretical undecidability, we designed two steps to implement the FNS approximation determination: coarse determination of FNS and precise calibration of FNS. We achieve coarse determination of FNS by the FNS self-determination (FNSD) strategy and achieve calibration of FNS by the FNS confidence calibration (FNCC) loss function. Experimental results on three RSI semantic segmentation datasets demonstrated that the FALSE effectively improves the accuracy of the downstream RSI semantic segmentation task compared with the current three models, which represent three different types of SSCL models. The mean Intersection-over-Union on ISPRS Potsdam dataset is improved by 0.7\% on average; on CVPR DGLC dataset is improved by 12.28\% on average; and on Xiangtan dataset this is improved by 1.17\% on average. This indicates that the SSCL model has the ability to self-differentiate FNS and that the FALSE effectively mitigates the SCI in self-supervised contrastive learning. The source code is available at https://github.com/GeoX-Lab/FALSE.
Abstract:Do we on the right way for remote sensing image understanding (RSIU) by training models via supervised data-dependent and task-dependent way, instead of human vision in a label-free and task-independent way? We argue that a more desirable RSIU model should be trained with intrinsic structure from data rather that extrinsic human labels to realize generalizability across a wide range of RSIU tasks. According to this hypothesis, we proposed \textbf{T}he \textbf{O}riginal \textbf{V}ision model (TOV) in remote sensing filed. Trained by massive unlabeled optical data along a human-like self-supervised learning (SSL) path that is from general knowledge to specialized knowledge, TOV model can be easily adapted to various RSIU tasks, including scene classification, object detection, and semantic segmentation, and outperforms dominant ImageNet supervised pretrained method as well as two recently proposed SSL pretrained methods on majority of 12 publicly available benchmarks. Moreover, we analyze the influences of two key factors on the performance of building TOV model for RSIU, including the influence of using different data sampling methods and the selection of learning paths during self-supervised optimization. We believe that a general model which is trained by a label-free and task-independent way may be the next paradigm for RSIU and hope the insights distilled from this study can help to foster the development of an original vision model for RSIU.
Abstract:Remembering and forgetting mechanisms are two sides of the same coin in a human learning-memory system. Inspired by human brain memory mechanisms, modern machine learning systems have been working to endow machine with lifelong learning capability through better remembering while pushing the forgetting as the antagonist to overcome. Nevertheless, this idea might only see the half picture. Up until very recently, increasing researchers argue that a brain is born to forget, i.e., forgetting is a natural and active process for abstract, rich, and flexible representations. This paper presents a learning model by active forgetting mechanism with artificial neural networks. The active forgetting mechanism (AFM) is introduced to a neural network via a "plug-and-play" forgetting layer (P\&PF), consisting of groups of inhibitory neurons with Internal Regulation Strategy (IRS) to adjust the extinction rate of themselves via lateral inhibition mechanism and External Regulation Strategy (ERS) to adjust the extinction rate of excitatory neurons via inhibition mechanism. Experimental studies have shown that the P\&PF offers surprising benefits: self-adaptive structure, strong generalization, long-term learning and memory, and robustness to data and parameter perturbation. This work sheds light on the importance of forgetting in the learning process and offers new perspectives to understand the underlying mechanisms of neural networks.