Abstract:End-to-end interpretation is currently the prevailing paradigm for remote sensing fine-grained ship classification (RS-FGSC) task. However, its inference process is uninterpretable, leading to criticism as a black box model. To address this issue, we propose a large vision-language model (LVLM) named IFShip for interpretable fine-grained ship classification. Unlike traditional methods, IFShip excels in interpretability by accurately conveying the reasoning process of FGSC in natural language. Specifically, we first design a domain knowledge-enhanced Chain-of-Thought (COT) prompt generation mechanism. This mechanism is used to semi-automatically construct a task-specific instruction-following dataset named TITANIC-FGS, which emulates human-like logical decision-making. We then train the IFShip model using task instructions tuned with the TITANIC-FGS dataset. Building on IFShip, we develop an FGSC visual chatbot that redefines the FGSC problem as a step-by-step reasoning task and conveys the reasoning process in natural language. Experimental results reveal that the proposed method surpasses state-of-the-art FGSC algorithms in both classification interpretability and accuracy. Moreover, compared to LVLMs like LLaVA and MiniGPT-4, our approach demonstrates superior expertise in the FGSC task. It provides an accurate chain of reasoning when fine-grained ship types are recognizable to the human eye and offers interpretable explanations when they are not.
Abstract:Deep learning has achieved great success in learning features from massive remote sensing images (RSIs). To better understand the connection between feature learning paradigms (e.g., unsupervised feature learning (USFL), supervised feature learning (SFL), and self-supervised feature learning (SSFL)), this paper analyzes and compares them from the perspective of feature learning signals, and gives a unified feature learning framework. Under this unified framework, we analyze the advantages of SSFL over the other two learning paradigms in RSIs understanding tasks and give a comprehensive review of the existing SSFL work in RS, including the pre-training dataset, self-supervised feature learning signals, and the evaluation methods. We further analyze the effect of SSFL signals and pre-training data on the learned features to provide insights for improving the RSI feature learning. Finally, we briefly discuss some open problems and possible research directions.