Abstract:In remote sensing scene classification, leveraging the transfer methods with well-trained optical models is an efficient way to overcome label scarcity. However, cloud contamination leads to optical information loss and significant impacts on feature distribution, challenging the reliability and stability of transferred target models. Common solutions include cloud removal for optical data or directly using Synthetic aperture radar (SAR) data in the target domain. However, cloud removal requires substantial auxiliary data for support and pre-training, while directly using SAR disregards the unobstructed portions of optical data. This study presents a scene classification transfer method that synergistically combines multi-modality data, which aims to transfer the source domain model trained on cloudfree optical data to the target domain that includes both cloudy optical and SAR data at low cost. Specifically, the framework incorporates two parts: (1) the collaborative transfer strategy, based on knowledge distillation, enables the efficient prior knowledge transfer across heterogeneous data; (2) the information regulation mechanism (IRM) is proposed to address the modality imbalance issue during transfer. It employs auxiliary models to measure the contribution discrepancy of each modality, and automatically balances the information utilization of modalities during the target model learning process at the sample-level. The transfer experiments were conducted on simulated and real cloud datasets, demonstrating the superior performance of the proposed method compared to other solutions in cloud-covered scenarios. We also verified the importance and limitations of IRM, and further discussed and visualized the modality imbalance problem during the model transfer. Codes are available at https://github.com/wangyuze-csu/ESCCS
Abstract:Existing works typically treat spatial-temporal prediction as the task of learning a function $F$ to transform historical observations to future observations. We further decompose this cross-time transformation into three processes: (1) Encoding ($E$): learning the intrinsic representation of observations, (2) Cross-Time Mapping ($M$): transforming past representations into future representations, and (3) Decoding ($D$): reconstructing future observations from the future representations. From this perspective, spatial-temporal prediction can be viewed as learning $F = E \cdot M \cdot D$, which includes learning the space transformations $\left\{{E},{D}\right\}$ between the observation space and the hidden representation space, as well as the spatial-temporal mapping $M$ from future states to past states within the representation space. This leads to two key questions: \textbf{Q1: What kind of representation space allows for mapping the past to the future? Q2: How to achieve map the past to the future within the representation space?} To address Q1, we propose a Spatial-Temporal Backdoor Adjustment strategy, which learns a Spatial-Temporal De-Confounded (STDC) representation space and estimates the de-confounding causal effect of historical data on future data. This causal relationship we captured serves as the foundation for subsequent spatial-temporal mapping. To address Q2, we design a Spatial-Temporal Embedding (STE) that fuses the information of temporal and spatial confounders, capturing the intrinsic spatial-temporal characteristics of the representations. Additionally, we introduce a Cross-Time Attention mechanism, which queries the attention between the future and the past to guide spatial-temporal mapping.
Abstract:Controllable Depth-of-Field (DoF) imaging commonly produces amazing visual effects based on heavy and expensive high-end lenses. However, confronted with the increasing demand for mobile scenarios, it is desirable to achieve a lightweight solution with Minimalist Optical Systems (MOS). This work centers around two major limitations of MOS, i.e., the severe optical aberrations and uncontrollable DoF, for achieving single-lens controllable DoF imaging via computational methods. A Depth-aware Controllable DoF Imaging (DCDI) framework is proposed equipped with All-in-Focus (AiF) aberration correction and monocular depth estimation, where the recovered image and corresponding depth map are utilized to produce imaging results under diverse DoFs of any high-end lens via patch-wise convolution. To address the depth-varying optical degradation, we introduce a Depth-aware Degradation-adaptive Training (DA2T) scheme. At the dataset level, a Depth-aware Aberration MOS (DAMOS) dataset is established based on the simulation of Point Spread Functions (PSFs) under different object distances. Additionally, we design two plug-and-play depth-aware mechanisms to embed depth information into the aberration image recovery for better tackling depth-aware degradation. Furthermore, we propose a storage-efficient Omni-Lens-Field model to represent the 4D PSF library of various lenses. With the predicted depth map, recovered image, and depth-aware PSF map inferred by Omni-Lens-Field, single-lens controllable DoF imaging is achieved. Comprehensive experimental results demonstrate that the proposed framework enhances the recovery performance, and attains impressive single-lens controllable DoF imaging results, providing a seminal baseline for this field. The source code and the established dataset will be publicly available at https://github.com/XiaolongQian/DCDI.
Abstract:Volumetric segmentation is crucial for medical imaging but is often constrained by labor-intensive manual annotations and the need for scenario-specific model training. Furthermore, existing general segmentation models are inefficient due to their design and inferential approaches. Addressing this clinical demand, we introduce PropSAM, a propagation-based segmentation model that optimizes the use of 3D medical structure information. PropSAM integrates a CNN-based UNet for intra-slice processing with a Transformer-based module for inter-slice propagation, focusing on structural and semantic continuities to enhance segmentation across various modalities. Distinctively, PropSAM operates on a one-view prompt, such as a 2D bounding box or sketch mask, unlike conventional models that require two-view prompts. It has demonstrated superior performance, significantly improving the Dice Similarity Coefficient (DSC) across 44 medical datasets and various imaging modalities, outperforming models like MedSAM and SegVol with an average DSC improvement of 18.1%. PropSAM also maintains stable predictions despite prompt deviations and varying propagation configurations, confirmed by one-way ANOVA tests with P>0.5985 and P>0.6131, respectively. Moreover, PropSAM's efficient architecture enables faster inference speeds (Wilcoxon rank-sum test, P<0.001) and reduces user interaction time by 37.8% compared to two-view prompt models. Its ability to handle irregular and complex objects with robust performance further demonstrates its potential in clinical settings, facilitating more automated and reliable medical imaging analyses with minimal retraining.
Abstract:End-to-end interpretation is currently the prevailing paradigm for remote sensing fine-grained ship classification (RS-FGSC) task. However, its inference process is uninterpretable, leading to criticism as a black box model. To address this issue, we propose a large vision-language model (LVLM) named IFShip for interpretable fine-grained ship classification. Unlike traditional methods, IFShip excels in interpretability by accurately conveying the reasoning process of FGSC in natural language. Specifically, we first design a domain knowledge-enhanced Chain-of-Thought (COT) prompt generation mechanism. This mechanism is used to semi-automatically construct a task-specific instruction-following dataset named TITANIC-FGS, which emulates human-like logical decision-making. We then train the IFShip model using task instructions tuned with the TITANIC-FGS dataset. Building on IFShip, we develop an FGSC visual chatbot that redefines the FGSC problem as a step-by-step reasoning task and conveys the reasoning process in natural language. Experimental results reveal that the proposed method surpasses state-of-the-art FGSC algorithms in both classification interpretability and accuracy. Moreover, compared to LVLMs like LLaVA and MiniGPT-4, our approach demonstrates superior expertise in the FGSC task. It provides an accurate chain of reasoning when fine-grained ship types are recognizable to the human eye and offers interpretable explanations when they are not.
Abstract:The existing change detection(CD) methods can be summarized as the visual-first change detection (ViFi-CD) paradigm, which first extracts change features from visual differences and then assigns them specific semantic information. However, CD is essentially dependent on change regions of interest (CRoIs), meaning that the CD results are directly determined by the semantics changes of interest, making its primary image factor semantic of interest rather than visual. The ViFi-CD paradigm can only assign specific semantics of interest to specific change features extracted from visual differences, leading to the inevitable omission of potential CRoIs and the inability to adapt to different CRoI CD tasks. In other words, changes in other CRoIs cannot be detected by the ViFi-CD method without retraining the model or significantly modifying the method. This paper introduces a new CD paradigm, the semantic-first CD (SeFi-CD) paradigm. The core idea of SeFi-CD is to first perceive the dynamic semantics of interest and then visually search for change features related to the semantics. Based on the SeFi-CD paradigm, we designed Anything You Want Change Detection (AUWCD). Experiments on public datasets demonstrate that the AUWCD outperforms the current state-of-the-art CD methods, achieving an average F1 score 5.01\% higher than that of these advanced supervised baselines on the SECOND dataset, with a maximum increase of 13.17\%. The proposed SeFi-CD offers a novel CD perspective and approach.
Abstract:The remote sensing image intelligence understanding model is undergoing a new profound paradigm shift which has been promoted by multi-modal large language model (MLLM), i.e. from the paradigm learning a domain model (LaDM) shifts to paradigm learning a pre-trained general foundation model followed by an adaptive domain model (LaGD). Under the new LaGD paradigm, the old datasets, which have led to advances in RSI intelligence understanding in the last decade, are no longer suitable for fire-new tasks. We argued that a new dataset must be designed to lighten tasks with the following features: 1) Generalization: training model to learn shared knowledge among tasks and to adapt to different tasks; 2) Understanding complex scenes: training model to understand the fine-grained attribute of the objects of interest, and to be able to describe the scene with natural language; 3) Reasoning: training model to be able to realize high-level visual reasoning. In this paper, we designed a high-quality, diversified, and unified multimodal instruction-following dataset for RSI understanding produced by GPT-4V and existing datasets, which we called RS-GPT4V. To achieve generalization, we used a (Question, Answer) which was deduced from GPT-4V via instruction-following to unify the tasks such as captioning and localization; To achieve complex scene, we proposed a hierarchical instruction description with local strategy in which the fine-grained attributes of the objects and their spatial relationships are described and global strategy in which all the local information are integrated to yield detailed instruction descript; To achieve reasoning, we designed multiple-turn QA pair to provide the reasoning ability for a model. The empirical results show that the fine-tuned MLLMs by RS-GPT4V can describe fine-grained information. The dataset is available at: https://github.com/GeoX-Lab/RS-GPT4V.
Abstract:Scene graph generation (SGG) in satellite imagery (SAI) benefits promoting intelligent understanding of geospatial scenarios from perception to cognition. In SAI, objects exhibit great variations in scales and aspect ratios, and there exist rich relationships between objects (even between spatially disjoint objects), which makes it necessary to holistically conduct SGG in large-size very-high-resolution (VHR) SAI. However, the lack of SGG datasets with large-size VHR SAI has constrained the advancement of SGG in SAI. Due to the complexity of large-size VHR SAI, mining triplets <subject, relationship, object> in large-size VHR SAI heavily relies on long-range contextual reasoning. Consequently, SGG models designed for small-size natural imagery are not directly applicable to large-size VHR SAI. To address the scarcity of datasets, this paper constructs a large-scale dataset for SGG in large-size VHR SAI with image sizes ranging from 512 x 768 to 27,860 x 31,096 pixels, named RSG, encompassing over 210,000 objects and more than 400,000 triplets. To realize SGG in large-size VHR SAI, we propose a context-aware cascade cognition (CAC) framework to understand SAI at three levels: object detection (OBD), pair pruning and relationship prediction. As a fundamental prerequisite for SGG in large-size SAI, a holistic multi-class object detection network (HOD-Net) that can flexibly integrate multi-scale contexts is proposed. With the consideration that there exist a huge amount of object pairs in large-size SAI but only a minority of object pairs contain meaningful relationships, we design a pair proposal generation (PPG) network via adversarial reconstruction to select high-value pairs. Furthermore, a relationship prediction network with context-aware messaging (RPCM) is proposed to predict the relationship types of these pairs.
Abstract:The tokenizer, as one of the fundamental components of large models, has long been overlooked or even misunderstood in visual tasks. One key factor of the great comprehension power of the large language model is that natural language tokenizers utilize meaningful words or subwords as the basic elements of language. In contrast, mainstream visual tokenizers, represented by patch-based methods such as Patch Embed, rely on meaningless rectangular patches as basic elements of vision, which cannot serve as effectively as words or subwords in language. Starting from the essence of the tokenizer, we defined semantically independent regions (SIRs) for vision. We designed a simple HOmogeneous visual tOKenizer: HOOK. HOOK mainly consists of two modules: the Object Perception Module (OPM) and the Object Vectorization Module (OVM). To achieve homogeneity, the OPM splits the image into 4*4 pixel seeds and then utilizes the attention mechanism to perceive SIRs. The OVM employs cross-attention to merge seeds within the same SIR. To achieve adaptability, the OVM defines a variable number of learnable vectors as cross-attention queries, allowing for the adjustment of token quantity. We conducted experiments on the NWPU-RESISC45, WHU-RS19 classification dataset, and GID5 segmentation dataset for sparse and dense tasks. The results demonstrate that the visual tokens obtained by HOOK correspond to individual objects, which demonstrates homogeneity. HOOK outperformed Patch Embed by 6\% and 10\% in the two tasks and achieved state-of-the-art performance compared to the baselines used for comparison. Compared to Patch Embed, which requires more than one hundred tokens for one image, HOOK requires only 6 and 8 tokens for sparse and dense tasks, respectively, resulting in efficiency improvements of 1.5 to 2.8 times. The code is available at https://github.com/GeoX-Lab/Hook.
Abstract:Accurate traffic forecasting is a fundamental problem in intelligent transportation systems and learning long-range traffic representations with key information through spatiotemporal graph neural networks (STGNNs) is a basic assumption of current traffic flow prediction models. However, due to structural limitations, existing STGNNs can only utilize short-range traffic flow data; therefore, the models cannot adequately learn the complex trends and periodic features in traffic flow. Besides, it is challenging to extract the key temporal information from the long historical traffic series and obtain a compact representation. To solve the above problems, we propose a novel LSTTN (Long-Short Term Transformer-based Network) framework comprehensively considering the long- and short-term features in historical traffic flow. First, we employ a masked subseries Transformer to infer the content of masked subseries from a small portion of unmasked subseries and their temporal context in a pretraining manner, forcing the model to efficiently learn compressed and contextual subseries temporal representations from long historical series. Then, based on the learned representations, long-term trend is extracted by using stacked 1D dilated convolution layers, and periodic features are extracted by dynamic graph convolution layers. For the difficulties in making time-step level prediction, LSTTN adopts a short-term trend extractor to learn fine-grained short-term temporal features. Finally, LSTTN fuses the long-term trend, periodic features and short-term features to obtain the prediction results. Experiments on four real-world datasets show that in 60-minute-ahead long-term forecasting, the LSTTN model achieves a minimum improvement of 5.63\% and a maximum improvement of 16.78\% over baseline models. The source code is available at https://github.com/GeoX-Lab/LSTTN.