Abstract:Large language models (LLMs) have proven effective for layout generation due to their ability to produce structure-description languages, such as HTML or JSON, even without access to visual information. Recently, LLM providers have evolved these models into large vision-language models (LVLM), which shows prominent multi-modal understanding capabilities. Then, how can we leverage this multi-modal power for layout generation? To answer this, we propose Visual-Aware Self-Correction LAyout GeneRation (VASCAR) for LVLM-based content-aware layout generation. In our method, LVLMs iteratively refine their outputs with reference to rendered layout images, which are visualized as colored bounding boxes on poster backgrounds. In experiments, we demonstrate that our method combined with the Gemini. Without any additional training, VASCAR achieves state-of-the-art (SOTA) layout generation quality outperforming both existing layout-specific generative models and other LLM-based methods.
Abstract:Assembling furniture amounts to solving the discrete-continuous optimization task of selecting the furniture parts to assemble and estimating their connecting poses in a physically realistic manner. The problem is hampered by its combinatorially large yet sparse solution space thus making learning to assemble a challenging task for current machine learning models. In this paper, we attempt to solve this task by leveraging the assembly instructions provided in diagrammatic manuals that typically accompany the furniture parts. Our key insight is to use the cues in these diagrams to split the problem into discrete and continuous phases. Specifically, we present Manual-PA, a transformer-based instruction Manual-guided 3D Part Assembly framework that learns to semantically align 3D parts with their illustrations in the manuals using a contrastive learning backbone towards predicting the assembly order and infers the 6D pose of each part via relating it to the final furniture depicted in the manual. To validate the efficacy of our method, we conduct experiments on the benchmark PartNet dataset. Our results show that using the diagrams and the order of the parts lead to significant improvements in assembly performance against the state of the art. Further, Manual-PA demonstrates strong generalization to real-world IKEA furniture assembly on the IKEA-Manual dataset.
Abstract:Event cameras, as an emerging imaging technology, offer distinct advantages over traditional RGB cameras, including reduced energy consumption and higher frame rates. However, the limited quantity of available event data presents a significant challenge, hindering their broader development. To alleviate this issue, we introduce a tailored U-shaped State Space Model Knowledge Transfer (USKT) framework for Event-to-RGB knowledge transfer. This framework generates inputs compatible with RGB frames, enabling event data to effectively reuse pre-trained RGB models and achieve competitive performance with minimal parameter tuning. Within the USKT architecture, we also propose a bidirectional reverse state space model. Unlike conventional bidirectional scanning mechanisms, the proposed Bidirectional Reverse State Space Model (BiR-SSM) leverages a shared weight strategy, which facilitates efficient modeling while conserving computational resources. In terms of effectiveness, integrating USKT with ResNet50 as the backbone improves model performance by 0.95%, 3.57%, and 2.9% on DVS128 Gesture, N-Caltech101, and CIFAR-10-DVS datasets, respectively, underscoring USKT's adaptability and effectiveness. The code will be made available upon acceptance.
Abstract:Optimizing the learning rate remains a critical challenge in machine learning, essential for achieving model stability and efficient convergence. The Vector Auxiliary Variable (VAV) algorithm introduces a novel energy-based self-adjustable learning rate optimization method designed for unconstrained optimization problems. It incorporates an auxiliary variable $r$ to facilitate efficient energy approximation without backtracking while adhering to the unconditional energy dissipation law. Notably, VAV demonstrates superior stability with larger learning rates and achieves faster convergence in the early stage of the training process. Comparative analyses demonstrate that VAV outperforms Stochastic Gradient Descent (SGD) across various tasks. This paper also provides rigorous proof of the energy dissipation law and establishes the convergence of the algorithm under reasonable assumptions. Additionally, $r$ acts as an empirical lower bound of the training loss in practice, offering a novel scheduling approach that further enhances algorithm performance.
Abstract:As Large Language Models (LLMs) are increasingly being deployed in safety-critical applications, their vulnerability to potential jailbreaks -- malicious prompts that can disable the safety mechanism of LLMs -- has attracted growing research attention. While alignment methods have been proposed to protect LLMs from jailbreaks, many have found that aligned LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations. Existing jailbreak attacks on LLMs can be categorized into prompt-level methods which make up stories/logic to circumvent safety alignment and token-level attack methods which leverage gradient methods to find adversarial tokens. In this work, we introduce the concept of Ensemble Jailbreak and explore methods that can integrate prompt-level and token-level jailbreak into a more powerful hybrid jailbreak attack. Specifically, we propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector. We evaluate the effectiveness of EnJa on several aligned models and show that it achieves a state-of-the-art attack success rate with fewer queries and is much stronger than any individual jailbreak.
Abstract:Large language models (LLMs) have recently showcased remarkable capabilities, spanning a wide range of tasks and applications, including those in the medical domain. Models like GPT-4 excel in medical question answering but may face challenges in the lack of interpretability when handling complex tasks in real clinical settings. We thus introduce the diagnostic reasoning dataset for clinical notes (DiReCT), aiming at evaluating the reasoning ability and interpretability of LLMs compared to human doctors. It contains 511 clinical notes, each meticulously annotated by physicians, detailing the diagnostic reasoning process from observations in a clinical note to the final diagnosis. Additionally, a diagnostic knowledge graph is provided to offer essential knowledge for reasoning, which may not be covered in the training data of existing LLMs. Evaluations of leading LLMs on DiReCT bring out a significant gap between their reasoning ability and that of human doctors, highlighting the critical need for models that can reason effectively in real-world clinical scenarios.
Abstract:Background: Stroke is second-leading cause of disability and death among adults. Approximately 17 million people suffer from a stroke annually, with about 85% being ischemic strokes. Predicting mortality of ischemic stroke patients in intensive care unit (ICU) is crucial for optimizing treatment strategies, allocating resources, and improving survival rates. Methods: We acquired data on ICU ischemic stroke patients from MIMIC-IV database, including diagnoses, vital signs, laboratory tests, medications, procedures, treatments, and clinical notes. Stroke patients were randomly divided into training (70%, n=2441), test (15%, n=523), and validation (15%, n=523) sets. To address data imbalances, we applied Synthetic Minority Over-sampling Technique (SMOTE). We selected 30 features for model development, significantly reducing feature number from 1095 used in the best study. We developed a deep learning model to assess mortality risk and implemented several baseline machine learning models for comparison. Results: XGB-DL model, combining XGBoost for feature selection and deep learning, effectively minimized false positives. Model AUROC improved from 0.865 (95% CI: 0.821 - 0.905) on first day to 0.903 (95% CI: 0.868 - 0.936) by fourth day using data from 3,646 ICU mortality patients in the MIMIC-IV database with 0.945 AUROC (95% CI: 0.944 - 0.947) during training. Although other ML models also performed well in terms of AUROC, we chose Deep Learning for its higher specificity. Conclusions: Through enhanced feature selection and data cleaning, proposed model demonstrates a 13% AUROC improvement compared to existing models while reducing feature number from 1095 in previous studies to 30.
Abstract:We study the challenging problem of simultaneously localizing a sequence of queries in the form of instructional diagrams in a video. This requires understanding not only the individual queries but also their interrelationships. However, most existing methods focus on grounding one query at a time, ignoring the inherent structures among queries such as the general mutual exclusiveness and the temporal order. Consequently, the predicted timespans of different step diagrams may overlap considerably or violate the temporal order, thus harming the accuracy. In this paper, we tackle this issue by simultaneously grounding a sequence of step diagrams. Specifically, we propose composite queries, constructed by exhaustively pairing up the visual content features of the step diagrams and a fixed number of learnable positional embeddings. Our insight is that self-attention among composite queries carrying different content features suppress each other to reduce timespan overlaps in predictions, while the cross-attention corrects the temporal misalignment via content and position joint guidance. We demonstrate the effectiveness of our approach on the IAW dataset for grounding step diagrams and the YouCook2 benchmark for grounding natural language queries, significantly outperforming existing methods while simultaneously grounding multiple queries.
Abstract:The imperative to comprehend the behaviors of deep learning models is of utmost importance. In this realm, Explainable Artificial Intelligence (XAI) has emerged as a promising avenue, garnering increasing interest in recent years. Despite this, most existing methods primarily depend on gradients or input perturbation, which often fails to embed explanations directly within the model's decision-making process. Addressing this gap, we introduce ESCOUTER, a visually explainable classifier based on the modified slot attention mechanism. ESCOUTER distinguishes itself by not only delivering high classification accuracy but also offering more transparent insights into the reasoning behind its decisions. It differs from prior approaches in two significant aspects: (a) ESCOUTER incorporates explanations into the final confidence scores for each category, providing a more intuitive interpretation, and (b) it offers positive or negative explanations for all categories, elucidating "why an image belongs to a certain category" or "why it does not." A novel loss function specifically for ESCOUTER is designed to fine-tune the model's behavior, enabling it to toggle between positive and negative explanations. Moreover, an area loss is also designed to adjust the size of the explanatory regions for a more precise explanation. Our method, rigorously tested across various datasets and XAI metrics, outperformed previous state-of-the-art methods, solidifying its effectiveness as an explanatory tool.
Abstract:Graph Neural Networks (GNNs) have achieved remarkable success in various real-world applications. However, GNNs may be trained on undesirable graph data, which can degrade their performance and reliability. To enable trained GNNs to efficiently unlearn unwanted data, a desirable solution is retraining-based graph unlearning, which partitions the training graph into subgraphs and trains sub-models on them, allowing fast unlearning through partial retraining. However, the graph partition process causes information loss in the training graph, resulting in the low model utility of sub-GNN models. In this paper, we propose GraphRevoker, a novel graph unlearning framework that better maintains the model utility of unlearnable GNNs. Specifically, we preserve the graph property with graph property-aware sharding and effectively aggregate the sub-GNN models for prediction with graph contrastive sub-model aggregation. We conduct extensive experiments to demonstrate the superiority of our proposed approach.