Abstract:This paper introduces Indiana Jones, an innovative approach to jailbreaking Large Language Models (LLMs) by leveraging inter-model dialogues and keyword-driven prompts. Through orchestrating interactions among three specialised LLMs, the method achieves near-perfect success rates in bypassing content safeguards in both white-box and black-box LLMs. The research exposes systemic vulnerabilities within contemporary models, particularly their susceptibility to producing harmful or unethical outputs when guided by ostensibly innocuous prompts framed in historical or contextual contexts. Experimental evaluations highlight the efficacy and adaptability of Indiana Jones, demonstrating its superiority over existing jailbreak methods. These findings emphasise the urgent need for enhanced ethical safeguards and robust security measures in the development of LLMs. Moreover, this work provides a critical foundation for future studies aimed at fortifying LLMs against adversarial exploitation while preserving their utility and flexibility.
Abstract:Recent advancements in multi-view action recognition have largely relied on Transformer-based models. While effective and adaptable, these models often require substantial computational resources, especially in scenarios with multiple views and multiple temporal sequences. Addressing this limitation, this paper introduces the MV-GMN model, a state-space model specifically designed to efficiently aggregate multi-modal data (RGB and skeleton), multi-view perspectives, and multi-temporal information for action recognition with reduced computational complexity. The MV-GMN model employs an innovative Multi-View Graph Mamba network comprising a series of MV-GMN blocks. Each block includes a proposed Bidirectional State Space Block and a GCN module. The Bidirectional State Space Block introduces four scanning strategies, including view-prioritized and time-prioritized approaches. The GCN module leverages rule-based and KNN-based methods to construct the graph network, effectively integrating features from different viewpoints and temporal instances. Demonstrating its efficacy, MV-GMN outperforms the state-of-the-arts on several datasets, achieving notable accuracies of 97.3\% and 96.7\% on the NTU RGB+D 120 dataset in cross-subject and cross-view scenarios, respectively. MV-GMN also surpasses Transformer-based baselines while requiring only linear inference complexity, underscoring the model's ability to reduce computational load and enhance the scalability and applicability of multi-view action recognition technologies.
Abstract:In the current development of large language models (LLMs), it is important to ensure the accuracy and reliability of the underlying data sources. LLMs are critical for various applications, but they often suffer from hallucinations and inaccuracies due to knowledge gaps in the training data. Knowledge graphs (KGs), as a powerful structural tool, could serve as a vital external information source to mitigate the aforementioned issues. By providing a structured and comprehensive understanding of real-world data, KGs enhance the performance and reliability of LLMs. However, it is common that errors exist in KGs while extracting triplets from unstructured data to construct KGs. This could lead to degraded performance in downstream tasks such as question-answering and recommender systems. Therefore, anomaly detection in KGs is essential to identify and correct these errors. This paper presents an anomaly detection algorithm in knowledge graphs with dual-channel learning (ADKGD). ADKGD leverages a dual-channel learning approach to enhance representation learning from both the entity-view and triplet-view perspectives. Furthermore, using a cross-layer approach, our framework integrates internal information aggregation and context information aggregation. We introduce a kullback-leibler (KL)-loss component to improve the accuracy of the scoring function between the dual channels. To evaluate ADKGD's performance, we conduct empirical studies on three real-world KGs: WN18RR, FB15K, and NELL-995. Experimental results demonstrate that ADKGD outperforms the state-of-the-art anomaly detection algorithms. The source code and datasets are publicly available at https://github.com/csjywu1/ADKGD.
Abstract:Graph Neural Networks (GNNs) have become the standard approach for learning and reasoning over relational data, leveraging the message-passing mechanism that iteratively propagates node embeddings through graph structures. While GNNs have achieved significant empirical success, their theoretical limitations remain an active area of research. Existing studies primarily focus on characterizing GNN expressiveness through Weisfeiler-Lehman (WL) graph isomorphism tests. In this paper, we take a fundamentally different approach by exploring the computational limitations of GNNs through the lens of circuit complexity. Specifically, we analyze the circuit complexity of common GNN architectures and prove that under constraints of constant-depth layers, linear or sublinear embedding sizes, and polynomial precision, GNNs cannot solve key problems such as graph connectivity and graph isomorphism unless $\mathsf{TC}^0 = \mathsf{NC}^1$. These results reveal the intrinsic expressivity limitations of GNNs behind their empirical success and introduce a novel framework for analyzing GNN expressiveness that can be extended to a broader range of GNN models and graph decision problems.
Abstract:There has been a growing interest in using Large Language Models (LLMs) for code review thanks to their proven proficiency in code comprehension. The primary objective of most review scenarios is to generate desired review comments (DRCs) that explicitly identify issues to trigger code fixes. However, existing LLM-based solutions are not so effective in generating DRCs for various reasons such as hallucination. To enhance their code review ability, they need to be fine-tuned with a customized dataset that is ideally full of DRCs. Nevertheless, such a dataset is not yet available, while manual annotation of DRCs is too laborious to be practical. In this paper, we propose a dataset distillation method, Desiview, which can automatically construct a distilled dataset by identifying DRCs from a code review dataset. Experiments on the CodeReviewer dataset comprising more than 150K review entries show that Desiview achieves an impressive performance of 88.93%, 80.37%, 86.67%, and 84.44% in terms of Precision, Recall, Accuracy, and F1, respectively, surpassing state-of-the-art methods. To validate the effect of such a distilled dataset on enhancing LLMs' code review ability, we first fine-tune the latest LLaMA series (i.e., LLaMA 3 and LLaMA 3.1) to build model Desiview4FT. We then enhance the model training effect through KTO alignment by feeding those review comments identified as non-DRCs to the LLMs, resulting in model Desiview4FA. Verification results indicate that Desiview4FA slightly outperforms Desiview4FT, while both models have significantly improved against the base models in terms of generating DRCs. Human evaluation confirms that both models identify issues more accurately and tend to generate review comments that better describe the issues contained in the code than the base LLMs do.
Abstract:With the prevalence of social networks on online platforms, social recommendation has become a vital technique for enhancing personalized recommendations. The effectiveness of social recommendations largely relies on the social homophily assumption, which presumes that individuals with social connections often share similar preferences. However, this foundational premise has been recently challenged due to the inherent complexity and noise present in real-world social networks. In this paper, we tackle the low social homophily challenge from an innovative generative perspective, directly generating optimal user social representations that maximize consistency with collaborative signals. Specifically, we propose the Score-based Generative Model for Social Recommendation (SGSR), which effectively adapts the Stochastic Differential Equation (SDE)-based diffusion models for social recommendations. To better fit the recommendation context, SGSR employs a joint curriculum training strategy to mitigate challenges related to missing supervision signals and leverages self-supervised learning techniques to align knowledge across social and collaborative domains. Extensive experiments on real-world datasets demonstrate the effectiveness of our approach in filtering redundant social information and improving recommendation performance.
Abstract:Large language models (LLMs) have proven effective for layout generation due to their ability to produce structure-description languages, such as HTML or JSON, even without access to visual information. Recently, LLM providers have evolved these models into large vision-language models (LVLM), which shows prominent multi-modal understanding capabilities. Then, how can we leverage this multi-modal power for layout generation? To answer this, we propose Visual-Aware Self-Correction LAyout GeneRation (VASCAR) for LVLM-based content-aware layout generation. In our method, LVLMs iteratively refine their outputs with reference to rendered layout images, which are visualized as colored bounding boxes on poster backgrounds. In experiments, we demonstrate that our method combined with the Gemini. Without any additional training, VASCAR achieves state-of-the-art (SOTA) layout generation quality outperforming both existing layout-specific generative models and other LLM-based methods.
Abstract:Assembling furniture amounts to solving the discrete-continuous optimization task of selecting the furniture parts to assemble and estimating their connecting poses in a physically realistic manner. The problem is hampered by its combinatorially large yet sparse solution space thus making learning to assemble a challenging task for current machine learning models. In this paper, we attempt to solve this task by leveraging the assembly instructions provided in diagrammatic manuals that typically accompany the furniture parts. Our key insight is to use the cues in these diagrams to split the problem into discrete and continuous phases. Specifically, we present Manual-PA, a transformer-based instruction Manual-guided 3D Part Assembly framework that learns to semantically align 3D parts with their illustrations in the manuals using a contrastive learning backbone towards predicting the assembly order and infers the 6D pose of each part via relating it to the final furniture depicted in the manual. To validate the efficacy of our method, we conduct experiments on the benchmark PartNet dataset. Our results show that using the diagrams and the order of the parts lead to significant improvements in assembly performance against the state of the art. Further, Manual-PA demonstrates strong generalization to real-world IKEA furniture assembly on the IKEA-Manual dataset.
Abstract:Event cameras, as an emerging imaging technology, offer distinct advantages over traditional RGB cameras, including reduced energy consumption and higher frame rates. However, the limited quantity of available event data presents a significant challenge, hindering their broader development. To alleviate this issue, we introduce a tailored U-shaped State Space Model Knowledge Transfer (USKT) framework for Event-to-RGB knowledge transfer. This framework generates inputs compatible with RGB frames, enabling event data to effectively reuse pre-trained RGB models and achieve competitive performance with minimal parameter tuning. Within the USKT architecture, we also propose a bidirectional reverse state space model. Unlike conventional bidirectional scanning mechanisms, the proposed Bidirectional Reverse State Space Model (BiR-SSM) leverages a shared weight strategy, which facilitates efficient modeling while conserving computational resources. In terms of effectiveness, integrating USKT with ResNet50 as the backbone improves model performance by 0.95%, 3.57%, and 2.9% on DVS128 Gesture, N-Caltech101, and CIFAR-10-DVS datasets, respectively, underscoring USKT's adaptability and effectiveness. The code will be made available upon acceptance.
Abstract:Optimizing the learning rate remains a critical challenge in machine learning, essential for achieving model stability and efficient convergence. The Vector Auxiliary Variable (VAV) algorithm introduces a novel energy-based self-adjustable learning rate optimization method designed for unconstrained optimization problems. It incorporates an auxiliary variable $r$ to facilitate efficient energy approximation without backtracking while adhering to the unconditional energy dissipation law. Notably, VAV demonstrates superior stability with larger learning rates and achieves faster convergence in the early stage of the training process. Comparative analyses demonstrate that VAV outperforms Stochastic Gradient Descent (SGD) across various tasks. This paper also provides rigorous proof of the energy dissipation law and establishes the convergence of the algorithm under reasonable assumptions. Additionally, $r$ acts as an empirical lower bound of the training loss in practice, offering a novel scheduling approach that further enhances algorithm performance.