Abstract:Protein language models (PLMs) have enabled advances in structure prediction and de novo protein design, yet they frequently collapse into pathological repetition during generation. Unlike in text, where repetition merely reduces readability, in proteins it undermines structural confidence and functional viability. To unify this problem, we present the first systematic study of repetition in PLMs. We first propose quantitative metrics to characterize motif-level and homopolymer repetition and then demonstrate their negative impact on folding reliability. To address this challenge, we propose UCCS (Utility-Controlled Contrastive Steering), which steers protein generation with a constrained dataset. Instead of naively contrasting high- vs. low-repetition sequences, we construct contrastive sets that maximize differences in repetition while tightly controlling for structural utility. This disentanglement yields steering vectors that specifically target repetition without degrading foldability. Injected at inference, these vectors consistently reduce repetition without retraining or heuristic decoding. Experiments with ESM-3 and ProtGPT2 in CATH, UniRef50, and SCOP show that our method outperforms decoding penalties and other baselines, substantially lowering repetition while preserving AlphaFold confidence scores. Our results establish repetition control as a central challenge for PLMs and highlight dataset-guided steering as a principled approach for reliable protein generation.
Abstract:Given the query, key and value matrices $Q, K, V\in \mathbb{R}^{n\times d}$, the attention module is defined as $\mathrm{Att}(Q, K, V)=D^{-1}AV$ where $A=\exp(QK^\top/\sqrt{d})$ with $\exp(\cdot)$ applied entrywise, $D=\mathrm{diag}(A{\bf 1}_n)$. The attention module is the backbone of modern transformers and large language models, but explicitly forming the softmax matrix $D^{-1}A$ incurs $Ω(n^2)$ time, motivating numerous approximation schemes that reduce runtime to $\widetilde O(nd)$ via sparsity or low-rank factorization. We propose a quantum data structure that approximates any row of $\mathrm{Att}(Q, K, V)$ using only row queries to $Q, K, V$. Our algorithm preprocesses these matrices in $\widetilde{O}\left( ε^{-1} n^{0.5} \left( s_λ^{2.5} + s_λ^{1.5} d + α^{0.5} d \right) \right)$ time, where $ε$ is the target accuracy, $s_λ$ is the $λ$-statistical dimension of the exponential kernel defined by $Q$ and $K$, and $α$ measures the row distortion of $V$ that is at most $d/{\rm srank}(V)$, the stable rank of $V$. Each row query can be answered in $\widetilde{O}(s_λ^2 + s_λd)$ time. To our knowledge, this is the first quantum data structure that approximates rows of the attention matrix in sublinear time with respect to $n$. Our approach relies on a quantum Nyström approximation of the exponential kernel, quantum multivariate mean estimation for computing $D$, and quantum leverage score sampling for the multiplication with $V$.
Abstract:Large multimodal models (LMMs) have achieved impressive performance on various vision-language tasks, but their substantial computational and memory costs hinder their practical deployment. Existing compression methods often decouple low-rank decomposition and quantization, leading to compounded reconstruction errors, especially in multimodal architectures with cross-modal redundancy. To address this issue, we propose LLaVA-FA, a novel efficient LMM that performs joint low-rank plus quantization approximation in the frequency domain. By leveraging the de-correlation and conjugate symmetry properties of Fourier transform, LLaVA-FA achieves more compact and accurate weight representations. Furthermore, we introduce PolarQuant, a polar-coordinate quantization method tailored for complex matrices, and an optional diagonal calibration (ODC) scheme that eliminates the need for large-scale calibration data. Extensive experimental results demonstrate that our proposed LLaVA-FA outperforms existing efficient multimodal models across multiple benchmarks while maintaining minimal activated parameters and low computational costs, validating its effectiveness as a powerful solution for compressing LMMs.
Abstract:We present FlexLLM, a composable High-Level Synthesis (HLS) library for rapid development of domain-specific LLM accelerators. FlexLLM exposes key architectural degrees of freedom for stage-customized inference, enabling hybrid designs that tailor temporal reuse and spatial dataflow differently for prefill and decode, and provides a comprehensive quantization suite to support accurate low-bit deployment. Using FlexLLM, we build a complete inference system for the Llama-3.2 1B model in under two months with only 1K lines of code. The system includes: (1) a stage-customized accelerator with hardware-efficient quantization (12.68 WikiText-2 PPL) surpassing SpinQuant baseline, and (2) a Hierarchical Memory Transformer (HMT) plug-in for efficient long-context processing. On the AMD U280 FPGA at 16nm, the accelerator achieves 1.29$\times$ end-to-end speedup, 1.64$\times$ higher decode throughput, and 3.14$\times$ better energy efficiency than an NVIDIA A100 GPU (7nm) running BF16 inference; projected results on the V80 FPGA at 7nm reach 4.71$\times$, 6.55$\times$, and 4.13$\times$, respectively. In long-context scenarios, integrating the HMT plug-in reduces prefill latency by 23.23$\times$ and extends the context window by 64$\times$, delivering 1.10$\times$/4.86$\times$ lower end-to-end latency and 5.21$\times$/6.27$\times$ higher energy efficiency on the U280/V80 compared to the A100 baseline. FlexLLM thus bridges algorithmic innovation in LLM inference and high-performance accelerators with minimal manual effort.
Abstract:Graph-based retrieval-augmented generation (GraphRAG) systems construct knowledge graphs over document collections to support multi-hop reasoning. While prior work shows that GraphRAG responses may leak retrieved subgraphs, the feasibility of query-efficient reconstruction of the hidden graph structure remains unexplored under realistic query budgets. We study a budget-constrained black-box setting where an adversary adaptively queries the system to steal its latent entity-relation graph. We propose AGEA (Agentic Graph Extraction Attack), a framework that leverages a novelty-guided exploration-exploitation strategy, external graph memory modules, and a two-stage graph extraction pipeline combining lightweight discovery with LLM-based filtering. We evaluate AGEA on medical, agriculture, and literary datasets across Microsoft-GraphRAG and LightRAG systems. Under identical query budgets, AGEA significantly outperforms prior attack baselines, recovering up to 90% of entities and relationships while maintaining high precision. These results demonstrate that modern GraphRAG systems are highly vulnerable to structured, agentic extraction attacks, even under strict query limits.
Abstract:The rapid growth of AI conference submissions has created an overwhelming reviewing burden. To alleviate this, recent venues such as ICLR 2026 introduced a reviewer nomination policy: each submission must nominate one of its authors as a reviewer, and any paper nominating an irresponsible reviewer is desk-rejected. We study this new policy from the perspective of author welfare. Assuming each author carries a probability of being irresponsible, we ask: how can authors (or automated systems) nominate reviewers to minimize the risk of desk rejections? We formalize and analyze three variants of the desk-rejection risk minimization problem. The basic problem, which minimizes expected desk rejections, is solved optimally by a simple greedy algorithm. We then introduce hard and soft nomination limit variants that constrain how many papers may nominate the same author, preventing widespread failures if one author is irresponsible. These formulations connect to classical optimization frameworks, including minimum-cost flow and linear programming, allowing us to design efficient, principled nomination strategies. Our results provide the first theoretical study for reviewer nomination policies, offering both conceptual insights and practical directions for authors to wisely choose which co-author should serve as the nominated reciprocal reviewer.
Abstract:The rapid advancement of large language models (LLMs) has led to significant breakthroughs in automated mathematical reasoning and scientific discovery. Georgiev, G${ó}$mez-Serrano, Tao, and Wagner [GGSTW+25] demonstrate that AI systems can explore new constructions and improve existing bounds, illustrating the growing potential of LLMs to accelerate mathematical discovery. Similarly, Bubeck et al. [BCE+25] show that GPT-5 can meaningfully contribute to scientific workflows, from proposing hypotheses to generating proofs and analyses. Despite these advances, a rigorous evaluation of these models on canonical, graduate-level mathematical theory remains necessary to understand their baseline reasoning capabilities. In this paper, we present a comprehensive benchmark of four frontier models: GPT-5-Thinking, Gemini-3-Pro, Claude-Sonnet-4.5-Thinking, and Grok-4 against the classic curriculum of Randomized Algorithms by Motwani and Raghavan [MR95]. We tasked each model with generating formal LaTeX proofs for a series of lemmas and exercises spanning the textbook. We find that while the top-tier models (Gemini, and Claude) achieve a high accuracy rate (approx. 66%), demonstrating a robust grasp of probabilistic method and formal logic, other models lag significantly in consistency (approx. 40%). We provide a qualitative analysis of the generated proofs, highlighting differences in conciseness, hallucination rates, and logical structure. Our results suggest that while frontier models have reached a threshold of proficiency suitable for graduate-level pedagogical assistance and formalization, significant variance exists in their reliability for rigorous mathematical derivation. The code and the full set of LLM-generated responses are open-sourced and publicly available at https://github.com/magiclinux/math_benchmark_probability.
Abstract:Most existing autonomous-driving datasets (e.g., KITTI, nuScenes, and the Waymo Perception Dataset), collected by human-driving mode or unidentified driving mode, can only serve as early training for the perception and prediction of autonomous vehicles (AVs). To evaluate the real behavioral safety of AVs controlled in the black box, we present the first end-to-end benchmark dataset collected entirely by autonomous-driving mode in the real world. This dataset contains over 100 hours of naturalistic data from multiple production autonomous-driving vehicle models in the market. We segment the original data into 32,727 key frames, each consisting of four synchronized camera images and high-precision GNSS/IMU data (0.8 cm localization accuracy). For each key frame, 20 Hz vehicle trajectories spanning the past 6 s and future 5 s are provided, along with detailed 2D annotations of surrounding vehicles, pedestrians, traffic lights, and traffic signs. These key frames have rich scenario-level attributes, including driver intent, area type (covering highways, urban roads, and residential areas), lighting (day, night, or dusk), weather (clear or rain), road surface (paved or unpaved), traffic and vulnerable road users (VRU) density, traffic lights, and traffic signs (warning, prohibition, and indication). To evaluate the safety of AVs, we employ an end-to-end motion planning model that predicts vehicle trajectories with an Average Displacement Error (ADE) of 1.4 m on autonomous-driving frames. The dataset continues to expand by over 10 hours of new data weekly, thereby providing a sustainable foundation for research on AV driving behavior analysis and safety evaluation. The PAVE dataset is publicly available at https://hkustgz-my.sharepoint.com/:f:/g/personal/kema_hkust-gz_edu_cn/IgDXyoHKfdGnSZ3JbbidjduMAXxs-Z3NXzm005A_Ix9tr0Q?e=9HReCu.
Abstract:Retrieval-Augmented Generation (RAG) has emerged as a fundamental paradigm for expanding Large Language Models beyond their static training limitations. However, a critical misalignment exists between current RAG capabilities and real-world information environments. Modern knowledge repositories are inherently multimodal, containing rich combinations of textual content, visual elements, structured tables, and mathematical expressions. Yet existing RAG frameworks are limited to textual content, creating fundamental gaps when processing multimodal documents. We present RAG-Anything, a unified framework that enables comprehensive knowledge retrieval across all modalities. Our approach reconceptualizes multimodal content as interconnected knowledge entities rather than isolated data types. The framework introduces dual-graph construction to capture both cross-modal relationships and textual semantics within a unified representation. We develop cross-modal hybrid retrieval that combines structural knowledge navigation with semantic matching. This enables effective reasoning over heterogeneous content where relevant evidence spans multiple modalities. RAG-Anything demonstrates superior performance on challenging multimodal benchmarks, achieving significant improvements over state-of-the-art methods. Performance gains become particularly pronounced on long documents where traditional approaches fail. Our framework establishes a new paradigm for multimodal knowledge access, eliminating the architectural fragmentation that constrains current systems. Our framework is open-sourced at: https://github.com/HKUDS/RAG-Anything.
Abstract:Vision-Language Models (VLMs) have become a central focus of today's AI community, owing to their impressive abilities gained from training on large-scale vision-language data from the Web. These models have demonstrated strong performance across diverse tasks, including image understanding, video understanding, complex visual reasoning, and embodied AI. Despite these noteworthy successes, a fundamental question remains: Can VLMs count objects correctly? In this paper, we introduce a simple yet effective benchmark, VLMCountBench, designed under a minimalist setting with only basic geometric shapes (e.g., triangles, circles) and their compositions, focusing exclusively on counting tasks without interference from other factors. We adopt strict independent variable control and systematically study the effects of simple properties such as color, size, and prompt refinement in a controlled ablation. Our empirical results reveal that while VLMs can count reliably when only one shape type is present, they exhibit substantial failures when multiple shape types are combined (i.e., compositional counting). This highlights a fundamental empirical limitation of current VLMs and motivates important directions for future research.