DJI Innovations Inc
Abstract:Large-scale industrial recommender systems commonly adopt multi-channel retrieval for candidate generation, combining direct user-to-item (U2I) retrieval with two-hop user-to-item-to-item (U2I2I) pipelines. In U2I2I, the system selects a small set of historical interactions as triggers to seed downstream item-to-item (I2I) retrieval across multiple channels. In production, triggers are often selected using rule-based policies or learned scorers and tuned in a channel-by-channel manner. However, these practices face two persistent challenges: biased value attribution that values triggers by on-trigger feedback rather than their downstream utility as retrieval seeds, and uncoordinated multi-channel routing where channels select triggers independently under a shared quota, increasing cross-channel overlap. To address these challenges, we propose Channel-Aware, Preference-Aligned Trigger Selection (CAPTS), a unified and flexible framework that treats multi-channel trigger selection as a learnable routing problem. CAPTS introduces a Value Attribution Module (VAM) that provides look-ahead supervision by crediting each trigger with the subsequent engagement generated by items retrieved from it on each I2I channel, and a Channel-Adaptive Trigger Routing (CATR) module that coordinates trigger-to-channel assignment to maximize the overall value of multi-channel retrieval. Extensive offline experiments and large-scale online A/B tests on Kwai, Kuaishou's international short-video platform, show that CAPTS consistently improves multi-channel recall offline and delivers a +0.351% lift in average time spent per device online.
Abstract:Humanoid robots show promise for complex whole-body tasks in unstructured environments. Although Human-Object Interaction (HOI) has advanced, most methods focus on fully actuated objects rigidly coupled to the robot, ignoring underactuated objects with independent dynamics and non-holonomic constraints. These introduce control challenges from coupling forces and occlusions. We present HAIC, a unified framework for robust interaction across diverse object dynamics without external state estimation. Our key contribution is a dynamics predictor that estimates high-order object states (velocity, acceleration) solely from proprioceptive history. These predictions are projected onto static geometric priors to form a spatially grounded dynamic occupancy map, enabling the policy to infer collision boundaries and contact affordances in blind spots. We use asymmetric fine-tuning, where a world model continuously adapts to the student policy's exploration, ensuring robust state estimation under distribution shifts. Experiments on a humanoid robot show HAIC achieves high success rates in agile tasks (skateboarding, cart pushing/pulling under various loads) by proactively compensating for inertial perturbations, and also masters multi-object long-horizon tasks like carrying a box across varied terrain by predicting the dynamics of multiple objects.
Abstract:Reward models learned from human preferences are central to aligning large language models (LLMs) via reinforcement learning from human feedback, yet they are often vulnerable to reward hacking due to noisy annotations and systematic biases such as response length or style. We propose Bayesian Non-Negative Reward Model (BNRM), a principled reward modeling framework that integrates non-negative factor analysis into Bradley-Terry (BT) preference model. BNRM represents rewards through a sparse, non-negative latent factor generative process that operates at two complementary levels: instance-specific latent variables induce disentangled reward representations, while sparsity over global latent factors acts as an implicit debiasing mechanism that suppresses spurious correlations. Together, this disentanglement-then-debiasing structure enables robust uncertainty-aware reward learning. To scale BNRM to modern LLMs, we develop an amortized variational inference network conditioned on deep model representations, allowing efficient end-to-end training. Extensive empirical results demonstrate that BNRM substantially mitigates reward over-optimization, improves robustness under distribution shifts, and yields more interpretable reward decompositions than strong baselines.
Abstract:Industrial recommender systems typically rely on multi-task learning to estimate diverse user feedback signals and aggregate them for ranking. Recent advances in model scaling have shown promising gains in recommendation. However, naively increasing model capacity imposes prohibitive online inference costs and often yields diminishing returns for sparse tasks with skewed label distributions. This mismatch between uniform parameter scaling and heterogeneous task capacity demands poses a fundamental challenge for scalable multi-task recommendation. In this work, we investigate parameter sparsification as a principled scaling paradigm and identify two critical obstacles when applying sparse Mixture-of-Experts (MoE) to multi-task recommendation: exploded expert activation that undermines instance-level sparsity and expert load skew caused by independent task-wise routing. To address these challenges, we propose SMES, a scalable sparse MoE framework with progressive expert routing. SMES decomposes expert activation into a task-shared expert subset jointly selected across tasks and task-adaptive private experts, explicitly bounding per-instance expert execution while preserving task-specific capacity. In addition, SMES introduces a global multi-gate load-balancing regularizer that stabilizes training by regulating aggregated expert utilization across all tasks. SMES has been deployed in Kuaishou large-scale short-video services, supporting over 400 million daily active users. Extensive online experiments demonstrate stable improvements, with GAUC gain of 0.29% and a 0.31% uplift in user watch time.
Abstract:Chain-of-Thought reasoning is widely used to improve the interpretability of multimodal large language models (MLLMs), yet the faithfulness of the generated reasoning traces remains unclear. Prior work has mainly focused on perceptual hallucinations, leaving reasoning level unfaithfulness underexplored. To isolate faithfulness from linguistic priors, we introduce SPD-Faith Bench, a diagnostic benchmark based on fine-grained image difference reasoning that enforces explicit visual comparison. Evaluations on state-of-the-art MLLMs reveal two systematic failure modes, perceptual blindness and perception-reasoning dissociation. We trace these failures to decaying visual attention and representation shifts in the residual stream. Guided by this analysis, we propose SAGE, a train-free visual evidence-calibrated framework that improves visual routing and aligns reasoning with perception. Our results highlight the importance of explicitly evaluating faithfulness beyond response correctness. Our benchmark and codes are available at https://github.com/Johanson-colab/SPD-Faith-Bench.
Abstract:In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional, incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime, where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce CSRv2, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k-annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at k=2, bringing ultra-sparse embeddings on par with CSR at k=8 and MRL at 32 dimensions, all with only two active features. While maintaining comparable performance, CSRv2 delivers a 7x speedup over MRL, and yields up to 300x improvements in compute and memory efficiency relative to dense embeddings in text representation. Extensive experiments across text and vision demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, where CSRv2 achieves 7%/4% improvement over CSR when k=4 and further increases this gap to 14%/6% when k=2 in text/vision representation. By making extreme sparsity viable, CSRv2 broadens the design space for real-time and edge-deployable AI systems where both embedding quality and efficiency are critical.
Abstract:Current stance detection research typically relies on predicting stance based on given targets and text. However, in real-world social media scenarios, targets are neither predefined nor static but rather complex and dynamic. To address this challenge, we propose a novel task: zero-shot stance detection in the wild with Dynamic Target Generation and Multi-Target Adaptation (DGTA), which aims to automatically identify multiple target-stance pairs from text without prior target knowledge. We construct a Chinese social media stance detection dataset and design multi-dimensional evaluation metrics. We explore both integrated and two-stage fine-tuning strategies for large language models (LLMs) and evaluate various baseline models. Experimental results demonstrate that fine-tuned LLMs achieve superior performance on this task: the two-stage fine-tuned Qwen2.5-7B attains the highest comprehensive target recognition score of 66.99%, while the integrated fine-tuned DeepSeek-R1-Distill-Qwen-7B achieves a stance detection F1 score of 79.26%.
Abstract:With the wide application of large language models (LLMs), the problems of bias and value inconsistency in sensitive domains have gradually emerged, especially in terms of race, society and politics. In this paper, we propose an adversarial alignment framework, which enhances the value consistency of the model in sensitive domains through continued pre-training, instruction fine-tuning and adversarial training. In adversarial training, we use the Attacker to generate controversial queries, the Actor to generate responses with value consistency, and the Critic to filter and ensure response quality. Furthermore, we train a Value-Consistent Large Language Model, VC-LLM, for sensitive domains, and construct a bilingual evaluation dataset in Chinese and English. The experimental results show that VC-LLM performs better than the existing mainstream models in both Chinese and English tests, verifying the effectiveness of the method. Warning: This paper contains examples of LLMs that are offensive or harmful in nature.
Abstract:Leveraging the vast open-world knowledge and understanding capabilities of Large Language Models (LLMs) to develop general-purpose, semantically-aware recommender systems has emerged as a pivotal research direction in generative recommendation. However, existing methods face bottlenecks in constructing item identifiers. Text-based methods introduce LLMs' vast output space, leading to hallucination, while methods based on Semantic IDs (SIDs) encounter a semantic gap between SIDs and LLMs' native vocabulary, requiring costly vocabulary expansion and alignment training. To address this, this paper introduces Term IDs (TIDs), defined as a set of semantically rich and standardized textual keywords, to serve as robust item identifiers. We propose GRLM, a novel framework centered on TIDs, employs Context-aware Term Generation to convert item's metadata into standardized TIDs and utilizes Integrative Instruction Fine-tuning to collaboratively optimize term internalization and sequential recommendation. Additionally, Elastic Identifier Grounding is designed for robust item mapping. Extensive experiments on real-world datasets demonstrate that GRLM significantly outperforms baselines across multiple scenarios, pointing a promising direction for generalizable and high-performance generative recommendation systems.
Abstract:We present NextFlow, a unified decoder-only autoregressive transformer trained on 6 trillion interleaved text-image discrete tokens. By leveraging a unified vision representation within a unified autoregressive architecture, NextFlow natively activates multimodal understanding and generation capabilities, unlocking abilities of image editing, interleaved content and video generation. Motivated by the distinct nature of modalities - where text is strictly sequential and images are inherently hierarchical - we retain next-token prediction for text but adopt next-scale prediction for visual generation. This departs from traditional raster-scan methods, enabling the generation of 1024x1024 images in just 5 seconds - orders of magnitude faster than comparable AR models. We address the instabilities of multi-scale generation through a robust training recipe. Furthermore, we introduce a prefix-tuning strategy for reinforcement learning. Experiments demonstrate that NextFlow achieves state-of-the-art performance among unified models and rivals specialized diffusion baselines in visual quality.