Abstract:Existing methods for farmland remote sensing image (FRSI) segmentation generally follow a static segmentation paradigm, where analysis relies solely on the limited information contained within a single input patch. Consequently, their reasoning capability is limited when dealing with complex scenes characterized by ambiguity and visual uncertainty. In contrast, human experts, when interpreting remote sensing images in such ambiguous cases, tend to actively query auxiliary images (such as higher-resolution, larger-scale, or temporally adjacent data) to conduct cross-verification and achieve more comprehensive reasoning. Inspired by this, we propose a reasoning-query-driven dynamic segmentation framework for FRSIs, named FarmMind. This framework breaks through the limitations of the static segmentation paradigm by introducing a reasoning-query mechanism, which dynamically and on-demand queries external auxiliary images to compensate for the insufficient information in a single input image. Unlike direct queries, this mechanism simulates the thinking process of human experts when faced with segmentation ambiguity: it first analyzes the root causes of segmentation ambiguities through reasoning, and then determines what type of auxiliary image needs to be queried based on this analysis. Extensive experiments demonstrate that FarmMind achieves superior segmentation performance and stronger generalization ability compared with existing methods. The source code and dataset used in this work are publicly available at: https://github.com/WithoutOcean/FarmMind.
Abstract:The traditional deep learning paradigm that solely relies on labeled data has limitations in representing the spatial relationships between farmland elements and the surrounding environment.It struggles to effectively model the dynamic temporal evolution and spatial heterogeneity of farmland. Language,as a structured knowledge carrier,can explicitly express the spatiotemporal characteristics of farmland, such as its shape, distribution,and surrounding environmental information.Therefore,a language-driven learning paradigm can effectively alleviate the challenges posed by the spatiotemporal heterogeneity of farmland.However,in the field of remote sensing imagery of farmland,there is currently no comprehensive benchmark dataset to support this research direction.To fill this gap,we introduced language based descriptions of farmland and developed FarmSeg-VL dataset,the first fine-grained image-text dataset designed for spatiotemporal farmland segmentation.Firstly, this article proposed a semi-automatic annotation method that can accurately assign caption to each image, ensuring high data quality and semantic richness while improving the efficiency of dataset construction.Secondly,the FarmSeg-VL exhibits significant spatiotemporal characteristics.In terms of the temporal dimension,it covers all four seasons.In terms of the spatial dimension,it covers eight typical agricultural regions across China.In addition, in terms of captions,FarmSeg-VL covers rich spatiotemporal characteristics of farmland,including its inherent properties,phenological characteristics, spatial distribution,topographic and geomorphic features,and the distribution of surrounding environments.Finally,we present a performance analysis of VLMs and the deep learning models that rely solely on labels trained on the FarmSeg-VL,demonstrating its potential as a standard benchmark for farmland segmentation.