Macquarie University
Abstract:Superpixel segmentation is a foundation for many higher-level computer vision tasks, such as image segmentation, object recognition, and scene understanding. Existing graph-based superpixel segmentation methods typically concentrate on the relationships between a given pixel and its directly adjacent pixels while overlooking the influence of non-adjacent pixels. These approaches do not fully leverage the global information in the graph, leading to suboptimal segmentation quality. To address this limitation, we present SIT-HSS, a hierarchical superpixel segmentation method based on structural information theory. Specifically, we first design a novel graph construction strategy that incrementally explores the pixel neighborhood to add edges based on 1-dimensional structural entropy (1D SE). This strategy maximizes the retention of graph information while avoiding an overly complex graph structure. Then, we design a new 2D SE-guided hierarchical graph partitioning method, which iteratively merges pixel clusters layer by layer to reduce the graph's 2D SE until a predefined segmentation scale is achieved. Experimental results on three benchmark datasets demonstrate that the SIT-HSS performs better than state-of-the-art unsupervised superpixel segmentation algorithms. The source code is available at \url{https://github.com/SELGroup/SIT-HSS}.
Abstract:With the continuous improvement of people's living standards and fast-paced working conditions, pre-made dishes are becoming increasingly popular among families and restaurants due to their advantages of time-saving, convenience, variety, cost-effectiveness, standard quality, etc. Object detection is a key technology for selecting ingredients and evaluating the quality of dishes in the pre-made dishes industry. To date, many object detection approaches have been proposed. However, accurate object detection of pre-made dishes is extremely difficult because of overlapping occlusion of ingredients, similarity of ingredients, and insufficient light in the processing environment. As a result, the recognition scene is relatively complex and thus leads to poor object detection by a single model. To address this issue, this paper proposes a Differential Evolution Integrated Hybrid Deep Learning (DEIHDL) model. The main idea of DEIHDL is three-fold: 1) three YOLO-based and transformer-based base models are developed respectively to increase diversity for detecting objects of pre-made dishes, 2) the three base models are integrated by differential evolution optimized self-adjusting weights, and 3) weighted boxes fusion strategy is employed to score the confidence of the three base models during the integration. As such, DEIHDL possesses the multi-performance originating from the three base models to achieve accurate object detection in complex pre-made dish scenes. Extensive experiments on real datasets demonstrate that the proposed DEIHDL model significantly outperforms the base models in detecting objects of pre-made dishes.
Abstract:Recent cross-domain recommendation (CDR) studies assume that disentangled domain-shared and domain-specific user representations can mitigate domain gaps and facilitate effective knowledge transfer. However, achieving perfect disentanglement is challenging in practice, because user behaviors in CDR are highly complex, and the true underlying user preferences cannot be fully captured through observed user-item interactions alone. Given this impracticability, we instead propose to model {\it joint identifiability} that establishes unique correspondence of user representations across domains, ensuring consistent preference modeling even when user behaviors exhibit shifts in different domains. To achieve this, we introduce a hierarchical user preference modeling framework that organizes user representations by the neural network encoder's depth, allowing separate treatment of shallow and deeper subspaces. In the shallow subspace, our framework models the interest centroids for each user within each domain, probabilistically determining the users' interest belongings and selectively aligning these centroids across domains to ensure fine-grained consistency in domain-irrelevant features. For deeper subspace representations, we enforce joint identifiability by decomposing it into a shared cross-domain stable component and domain-variant components, linked by a bijective transformation for unique correspondence. Empirical studies on real-world CDR tasks with varying domain correlations demonstrate that our method consistently surpasses state-of-the-art, even with weakly correlated tasks, highlighting the importance of joint identifiability in achieving robust CDR.
Abstract:Graph neural networks (GNNs) are gaining popularity for processing graph-structured data. In real-world scenarios, graph data within the same dataset can vary significantly in scale. This variability leads to depth-sensitivity, where the optimal depth of GNN layers depends on the scale of the graph data. Empirically, fewer layers are sufficient for message passing in smaller graphs, while larger graphs typically require deeper networks to capture long-range dependencies and global features. However, existing methods generally use a fixed number of GNN layers to generate representations for all graphs, overlooking the depth-sensitivity issue in graph structure data. To address this challenge, we propose the depth adaptive mixture of expert (DA-MoE) method, which incorporates two main improvements to GNN backbone: \textbf{1)} DA-MoE employs different GNN layers, each considered an expert with its own parameters. Such a design allows the model to flexibly aggregate information at different scales, effectively addressing the depth-sensitivity issue in graph data. \textbf{2)} DA-MoE utilizes GNN to capture the structural information instead of the linear projections in the gating network. Thus, the gating network enables the model to capture complex patterns and dependencies within the data. By leveraging these improvements, each expert in DA-MoE specifically learns distinct graph patterns at different scales. Furthermore, comprehensive experiments on the TU dataset and open graph benchmark (OGB) have shown that DA-MoE consistently surpasses existing baselines on various tasks, including graph, node, and link-level analyses. The code are available at \url{https://github.com/Celin-Yao/DA-MoE}.
Abstract:Molecular optimization (MO) is a crucial stage in drug discovery in which task-oriented generated molecules are optimized to meet practical industrial requirements. Existing mainstream MO approaches primarily utilize external property predictors to guide iterative property optimization. However, learning all molecular samples in the vast chemical space is unrealistic for predictors. As a result, errors and noise are inevitably introduced during property prediction due to the nature of approximation. This leads to discrepancy accumulation, generalization reduction and suboptimal molecular candidates. In this paper, we propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM). TransDLM leverages standardized chemical nomenclature as semantic representations of molecules and implicitly embeds property requirements into textual descriptions, thereby preventing error propagation during diffusion process. Guided by physically and chemically detailed textual descriptions, TransDLM samples and optimizes encoded source molecules, retaining core scaffolds of source molecules and ensuring structural similarities. Moreover, TransDLM enables simultaneous sampling of multiple molecules, making it ideal for scalable, efficient large-scale optimization through distributed computation on web platforms. Furthermore, our approach surpasses state-of-the-art methods in optimizing molecular structural similarity and enhancing chemical properties on the benchmark dataset. The code is available at: https://anonymous.4open.science/r/TransDLM-A901.
Abstract:Molecular optimization is a crucial aspect of drug discovery, aimed at refining molecular structures to enhance drug efficacy and minimize side effects, ultimately accelerating the overall drug development process. Many target-based molecular optimization methods have been proposed, significantly advancing drug discovery. These methods primarily on understanding the specific drug target structures or their hypothesized roles in combating diseases. However, challenges such as a limited number of available targets and a difficulty capturing clear structures hinder innovative drug development. In contrast, phenotypic drug discovery (PDD) does not depend on clear target structures and can identify hits with novel and unbiased polypharmacology signatures. As a result, PDD-based molecular optimization can reduce potential safety risks while optimizing phenotypic activity, thereby increasing the likelihood of clinical success. Therefore, we propose a fragment-masked molecular optimization method based on PDD (FMOP). FMOP employs a regression-free diffusion model to conditionally optimize the molecular masked regions without training, effectively generating new molecules with similar scaffolds. On the large-scale drug response dataset GDSCv2, we optimize the potential molecules across all 945 cell lines. The overall experiments demonstrate that the in-silico optimization success rate reaches 94.4%, with an average efficacy increase of 5.3%. Additionally, we conduct extensive ablation and visualization experiments, confirming that FMOP is an effective and robust molecular optimization method. The code is available at:https://anonymous.4open.science/r/FMOP-98C2.
Abstract:Exploring the complex structure of the human brain is crucial for understanding its functionality and diagnosing brain disorders. Thanks to advancements in neuroimaging technology, a novel approach has emerged that involves modeling the human brain as a graph-structured pattern, with different brain regions represented as nodes and the functional relationships among these regions as edges. Moreover, graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data. Developing GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention. However, there is a lack of systematic survey work summarizing current research methods in this domain. In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs. We first introduce the process of brain graph modeling based on common neuroimaging data. Subsequently, we systematically categorize current works based on the type of brain graph generated and the targeted research problems. To make this research accessible to a broader range of interested researchers, we provide an overview of representative methods and commonly used datasets, along with their implementation sources. Finally, we present our insights on future research directions. The repository of this survey is available at \url{https://github.com/XuexiongLuoMQ/Awesome-Brain-Graph-Learning-with-GNNs}.
Abstract:Graph contrastive learning (GCL) is a popular method for leaning graph representations by maximizing the consistency of features across augmented views. Traditional GCL methods utilize single-perspective i.e. data or model-perspective) augmentation to generate positive samples, restraining the diversity of positive samples. In addition, these positive samples may be unreliable due to uncontrollable augmentation strategies that potentially alter the semantic information. To address these challenges, this paper proposed a innovative framework termed dual-perspective cross graph contrastive learning (DC-GCL), which incorporates three modifications designed to enhance positive sample diversity and reliability: 1) We propose dual-perspective augmentation strategy that provide the model with more diverse training data, enabling the model effective learning of feature consistency across different views. 2) From the data perspective, we slightly perturb the original graphs using controllable data augmentation, effectively preserving their semantic information. 3) From the model perspective, we enhance the encoder by utilizing more powerful graph transformers instead of graph neural networks. Based on the model's architecture, we propose three pruning-based strategies to slightly perturb the encoder, providing more reliable positive samples. These modifications collectively form the DC-GCL's foundation and provide more diverse and reliable training inputs, offering significant improvements over traditional GCL methods. Extensive experiments on various benchmarks demonstrate that DC-GCL consistently outperforms different baselines on various datasets and tasks.
Abstract:Drug response prediction (DRP) is a crucial phase in drug discovery, and the most important metric for its evaluation is the IC50 score. DRP results are heavily dependent on the quality of the generated molecules. Existing molecule generation methods typically employ classifier-based guidance, enabling sampling within the IC50 classification range. However, these methods fail to ensure the sampling space range's effectiveness, generating numerous ineffective molecules. Through experimental and theoretical study, we hypothesize that conditional generation based on the target IC50 score can obtain a more effective sampling space. As a result, we introduce regressor-free guidance molecule generation to ensure sampling within a more effective space and support DRP. Regressor-free guidance combines a diffusion model's score estimation with a regression controller model's gradient based on number labels. To effectively map regression labels between drugs and cell lines, we design a common-sense numerical knowledge graph that constrains the order of text representations. Experimental results on the real-world dataset for the DRP task demonstrate our method's effectiveness in drug discovery. The code is available at:https://anonymous.4open.science/r/RMCD-DBD1.
Abstract:Drug-target interaction (DTI) prediction is a critical component of the drug discovery process. In the drug development engineering field, predicting novel drug-target interactions is extremely crucial.However, although existing methods have achieved high accuracy levels in predicting known drugs and drug targets, they fail to utilize global protein information during DTI prediction. This leads to an inability to effectively predict interaction the interactions between novel drugs and their targets. As a result, the cross-field information fusion strategy is employed to acquire local and global protein information. Thus, we propose the siamese drug-target interaction SiamDTI prediction method, which utilizes a double channel network structure for cross-field supervised learning.Experimental results on three benchmark datasets demonstrate that SiamDTI achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.Additionally, SiamDTI's performance with known drugs and targets is comparable to that of SOTA approachs. The code is available at https://anonymous.4open.science/r/DDDTI-434D.