Abstract:This paper introduces the design and implementation of WiField, a WiFi sensing system deployed on COTS devices that can simultaneously identify multiple wavelength-level targets placed flexibly. Unlike traditional RF sensing schemes that focus on specific targets and RF links, WiField focuses on all media in the sensing area for the entire electric field. In this perspective, WiField provides a unified framework to finely characterize the diffraction, scattering, and other effects of targets at different positions, materials, and numbers on signals. The combination of targets in different positions, numbers, and sizes is just a special case. WiField proposed a scheme that utilizes phaseless data to complete the inverse mapping from electric field to material distribution, thereby achieving the simultaneous identification of multiple wavelength-level targets at any position and having the potential for deployment on a wide range of low-cost COTS devices. Our evaluation results show that it has an average identification accuracy of over 97% for 1-3 targets (5 cm * 10 cm in size) with different materials randomly placed within a 1.05 m * 1.05 m area.
Abstract:In this article, we explore the challenges and evolution of two key technologies in the current field of AI: Vision Transformer model and Large Language Model (LLM). Vision Transformer captures global information by splitting images into small pieces and leveraging Transformer's multi-head attention mechanism, but its high reference count and compute overhead limit deployment on mobile devices. At the same time, the rapid development of LLM has revolutionized natural language processing, but it also faces huge deployment challenges. To address these issues, we investigate model pruning techniques, with a particular focus on how to reduce redundant parameters without losing accuracy to accommodate personalized data and resource-constrained environments. In this paper, a new layered pruning strategy is proposed to distinguish the personalized layer from the common layer by compressed sensing and random sampling, thus significantly reducing the model parameters. Our experimental results show that the introduced step buffering mechanism further improves the accuracy of the model after pruning, providing new directions and possibilities for the deployment of efficient and personalized AI models on mobile devices in the future.
Abstract:The significance of intelligent sensing systems is growing in the realm of smart services. These systems extract relevant signal features and generate informative representations for particular tasks. However, building the feature extraction component for such systems requires extensive domain-specific expertise or data. The exceptionally rapid development of foundation models is likely to usher in newfound abilities in such intelligent sensing. We propose a new scheme for sensing model, which we refer to as semi-generalist sensing model (SGSM). SGSM is able to semiautomatically solve various tasks using relatively less task-specific labeled data compared to traditional systems. Built through the analysis of the common theoretical model, SGSM can depict different modalities, such as the acoustic and Wi-Fi signal. Experimental results on such two heterogeneous sensors illustrate that SGSM functions across a wide range of scenarios, thereby establishing its broad applicability. In some cases, SGSM even achieves better performance than sensor-specific specialized solutions. Wi-Fi evaluations indicate a 20\% accuracy improvement when applying SGSM to an existing sensing model.
Abstract:Integrated Sensing and Communication (ISAC) is gradually becoming a reality due to the significant increase in frequency and bandwidth of next-generation wireless communication technologies. Therefore it becomes crucial to evaluate the communication and sensing performance using appropriate channel models to address resource competition from each other. Existing work only models the sensing capability based on the mutual information between the channel response and the received signal, and its theoretical resolution is difficult to support the high-precision requirements of ISAC for sensing tasks, and may even affect its communication optimal. In this paper, we propose a sensing channel encoder model to measure the sensing capacity with higher resolution by discrete task mutual information. For the first time, derive upper and lower bounds on the sensing accuracy for a given channel. This model not only provides the possibility of optimizing the ISAC systems at a finer granularity and balancing communication and sensing resources, but also provides theoretical explanations for classical intuitive feelings (like more modalities more accuracy) in wireless sensing. Furthermore, we validate the effectiveness of the proposed channel model through real-case studies, including person identification, displacement detection, direction estimation, and device recognition. The evaluation results indicate a Pearson correlation coefficient exceeding 0.9 between our task mutual information and conventional experimental metrics (e.g., accuracy).
Abstract:Link prediction typically studies the probability of future interconnection among nodes with the observation in a single social network. More often than not, real scenario is presented as a multiplex network with common (anchor) users active in multiple social networks. In the literature, most existing works study either the intra-link prediction in a single network or inter-link prediction among networks (a.k.a. network alignment), and consider two learning tasks are independent from each other, which is still away from the fact. On the representation space, the vast majority of existing methods are built upon the traditional Euclidean space, unaware of the inherent geometry of social networks. The third issue is on the scarce anchor users. Annotating anchor users is laborious and expensive, and thus it is impractical to work with quantities of anchor users. Herein, in light of the issues above, we propose to study a challenging yet practical problem of Geometry-aware Collective Link Prediction across Multiplex Network. To address this problem, we present a novel contrastive model, RCoCo, which collaborates intra- and inter-network behaviors in Riemannian spaces. In RCoCo, we design a curvature-aware graph attention network ($\kappa-$GAT), conducting attention mechanism in Riemannian manifold whose curvature is estimated by the Ricci curvatures over the network. Thereafter, we formulate intra- and inter-contrastive loss in the manifolds, in which we augment graphs by exploring the high-order structure of community and information transfer on anchor users. Finally, we conduct extensive experiments with 14 strong baselines on 8 real-world datasets, and show the effectiveness of RCoCo.