Abstract:As data privacy and security attract increasing attention, Federated Recommender System (FRS) offers a solution that strikes a balance between providing high-quality recommendations and preserving user privacy. However, the presence of statistical heterogeneity in FRS, commonly observed due to personalized decision-making patterns, can pose challenges. To address this issue and maximize the benefit of collaborative filtering (CF) in FRS, it is intuitive to consider clustering clients (users) as well as items into different groups and learning group-specific models. Existing methods either resort to client clustering via user representations-risking privacy leakage, or employ classical clustering strategies on item embeddings or gradients, which we found are plagued by the curse of dimensionality. In this paper, we delve into the inefficiencies of the K-Means method in client grouping, attributing failures due to the high dimensionality as well as data sparsity occurring in FRS, and propose CoFedRec, a novel Co-clustering Federated Recommendation mechanism, to address clients heterogeneity and enhance the collaborative filtering within the federated framework. Specifically, the server initially formulates an item membership from the client-provided item networks. Subsequently, clients are grouped regarding a specific item category picked from the item membership during each communication round, resulting in an intelligently aggregated group model. Meanwhile, to comprehensively capture the global inter-relationships among items, we incorporate an additional supervised contrastive learning term based on the server-side generated item membership into the local training phase for each client. Extensive experiments on four datasets are provided, which verify the effectiveness of the proposed CoFedRec.
Abstract:Cognitive diagnosis model (CDM) is a fundamental and upstream component in intelligent education. It aims to infer students' mastery levels based on historical response logs. However, existing CDMs usually follow the ID-based embedding paradigm, which could often diminish the effectiveness of CDMs in open student learning environments. This is mainly because they can hardly directly infer new students' mastery levels or utilize new exercises or knowledge without retraining. Textual semantic information, due to its unified feature space and easy accessibility, can help alleviate this issue. Unfortunately, directly incorporating semantic information may not benefit CDMs, since it does not capture response-relevant features and thus discards the individual characteristics of each student. To this end, this paper proposes a dual-fusion cognitive diagnosis framework (DFCD) to address the challenge of aligning two different modalities, i.e., textual semantic features and response-relevant features. Specifically, in DFCD, we first propose the exercise-refiner and concept-refiner to make the exercises and knowledge concepts more coherent and reasonable via large language models. Then, DFCD encodes the refined features using text embedding models to obtain the semantic information. For response-related features, we propose a novel response matrix to fully incorporate the information within the response logs. Finally, DFCD designs a dual-fusion module to merge the two modal features. The ultimate representations possess the capability of inference in open student learning environments and can be also plugged in existing CDMs. Extensive experiments across real-world datasets show that DFCD achieves superior performance by integrating different modalities and strong adaptability in open student learning environments.
Abstract:Recommender systems predict personalized item rankings based on user preference distributions derived from historical behavior data. Recently, diffusion models (DMs) have gained attention in recommendation for their ability to model complex distributions, yet current DM-based recommenders often rely on traditional objectives like mean squared error (MSE) or recommendation objectives, which are not optimized for personalized ranking tasks or fail to fully leverage DM's generative potential. To address this, we propose PreferDiff, a tailored optimization objective for DM-based recommenders. PreferDiff transforms BPR into a log-likelihood ranking objective and integrates multiple negative samples to better capture user preferences. Specifically, we employ variational inference to handle the intractability through minimizing the variational upper bound and replaces MSE with cosine error to improve alignment with recommendation tasks. Finally, we balance learning generation and preference to enhance the training stability of DMs. PreferDiff offers three key benefits: it is the first personalized ranking loss designed specifically for DM-based recommenders and it improves ranking and faster convergence by addressing hard negatives. We also prove that it is theoretically connected to Direct Preference Optimization which indicates that it has the potential to align user preferences in DM-based recommenders via generative modeling. Extensive experiments across three benchmarks validate its superior recommendation performance and commendable general sequential recommendation capabilities. Our codes are available at \url{https://github.com/lswhim/PreferDiff}.
Abstract:Neural network models for audio tasks, such as automatic speech recognition (ASR) and acoustic scene classification (ASC), are susceptible to noise contamination for real-life applications. To improve audio quality, an enhancement module, which can be developed independently, is explicitly used at the front-end of the target audio applications. In this paper, we present an end-to-end learning solution to jointly optimise the models for audio enhancement (AE) and the subsequent applications. To guide the optimisation of the AE module towards a target application, and especially to overcome difficult samples, we make use of the sample-wise performance measure as an indication of sample importance. In experiments, we consider four representative applications to evaluate our training paradigm, i.e., ASR, speech command recognition (SCR), speech emotion recognition (SER), and ASC. These applications are associated with speech and non-speech tasks concerning semantic and non-semantic features, transient and global information, and the experimental results indicate that our proposed approach can considerably boost the noise robustness of the models, especially at low signal-to-noise ratios (SNRs), for a wide range of computer audition tasks in everyday-life noisy environments.
Abstract:Traditional robotic motion planning methods often struggle with fixed resolutions in dynamically changing environments. To address these challenges, we introduce the A-OctoMap, an adaptive Octo-Tree structure that enhances spatial representation and facilitates real-time, efficient motion planning. This novel framework allows for dynamic space partitioning and multi-resolution queries, significantly improving computational efficiency and precision. Key innovations include a tree-based data structure for enhanced geometric processing, real-time map updating for accurate trajectory planning, and efficient collision detection. Our extensive testing shows superior navigation safety and efficiency in complex settings compared to conventional methods. A-OctoMap sets a new standard for adaptive spatial mapping in autonomous systems, promising significant advancements in navigating unpredictable environments.
Abstract:The significance of intelligent sensing systems is growing in the realm of smart services. These systems extract relevant signal features and generate informative representations for particular tasks. However, building the feature extraction component for such systems requires extensive domain-specific expertise or data. The exceptionally rapid development of foundation models is likely to usher in newfound abilities in such intelligent sensing. We propose a new scheme for sensing model, which we refer to as semi-generalist sensing model (SGSM). SGSM is able to semiautomatically solve various tasks using relatively less task-specific labeled data compared to traditional systems. Built through the analysis of the common theoretical model, SGSM can depict different modalities, such as the acoustic and Wi-Fi signal. Experimental results on such two heterogeneous sensors illustrate that SGSM functions across a wide range of scenarios, thereby establishing its broad applicability. In some cases, SGSM even achieves better performance than sensor-specific specialized solutions. Wi-Fi evaluations indicate a 20\% accuracy improvement when applying SGSM to an existing sensing model.
Abstract:With the rapid advancement of multimodal large language models (MLLMs), their evaluation has become increasingly comprehensive. However, understanding long multimodal content, as a foundational ability for real-world applications, remains underexplored. In this work, we present Needle In A Multimodal Haystack (MM-NIAH), the first benchmark specifically designed to systematically evaluate the capability of existing MLLMs to comprehend long multimodal documents. Our benchmark includes three types of evaluation tasks: multimodal retrieval, counting, and reasoning. In each task, the model is required to answer the questions according to different key information scattered throughout the given multimodal document. Evaluating the leading MLLMs on MM-NIAH, we observe that existing models still have significant room for improvement on these tasks, especially on vision-centric evaluation. We hope this work can provide a platform for further research on long multimodal document comprehension and contribute to the advancement of MLLMs. Code and benchmark are released at https://github.com/OpenGVLab/MM-NIAH.
Abstract:Large vision-language models (LVLMs) are ignorant of the up-to-date knowledge, such as LLaVA series, because they cannot be updated frequently due to the large amount of resources required, and therefore fail in many cases. For example, if a LVLM was released on January 2024, and it wouldn't know the detailed plot of the new movie Dune 2, which wasn't released until February 2024. To solve the problem, a promising solution is to provide LVLMs with up-to-date knowledge via internet search during inference, i.e., internet-augmented generation (IAG), which is already integrated in some closed-source commercial LVLMs such as GPT-4V. However, the specific mechanics underpinning them remain a mystery. In this paper, we propose a plug-and-play framework, for augmenting existing LVLMs in handling visual question answering (VQA) about up-to-date knowledge, dubbed UDKAG. A hierarchical filtering model is trained to effectively and efficiently find the most helpful content from the websites returned by a search engine to prompt LVLMs with up-to-date knowledge. To train the model and evaluate our framework's performance, we propose a pipeline to automatically generate news-related VQA samples to construct a dataset, dubbed UDK-VQA. A multi-model voting mechanism is introduced to label the usefulness of website/content for VQA samples to construct the training set. Experimental results demonstrate the effectiveness of our framework, outperforming GPT-4V by about 25% in accuracy.
Abstract:Detecting anomaly edges for dynamic graphs aims to identify edges significantly deviating from the normal pattern and can be applied in various domains, such as cybersecurity, financial transactions and AIOps. With the evolving of time, the types of anomaly edges are emerging and the labeled anomaly samples are few for each type. Current methods are either designed to detect randomly inserted edges or require sufficient labeled data for model training, which harms their applicability for real-world applications. In this paper, we study this problem by cooperating with the rich knowledge encoded in large language models(LLMs) and propose a method, namely AnomalyLLM. To align the dynamic graph with LLMs, AnomalyLLM pre-trains a dynamic-aware encoder to generate the representations of edges and reprograms the edges using the prototypes of word embeddings. Along with the encoder, we design an in-context learning framework that integrates the information of a few labeled samples to achieve few-shot anomaly detection. Experiments on four datasets reveal that AnomalyLLM can not only significantly improve the performance of few-shot anomaly detection, but also achieve superior results on new anomalies without any update of model parameters.
Abstract:Large Vision-Language Models (LVLMs) show significant strides in general-purpose multimodal applications such as visual dialogue and embodied navigation. However, existing multimodal evaluation benchmarks cover a limited number of multimodal tasks testing rudimentary capabilities, falling short in tracking LVLM development. In this study, we present MMT-Bench, a comprehensive benchmark designed to assess LVLMs across massive multimodal tasks requiring expert knowledge and deliberate visual recognition, localization, reasoning, and planning. MMT-Bench comprises $31,325$ meticulously curated multi-choice visual questions from various multimodal scenarios such as vehicle driving and embodied navigation, covering $32$ core meta-tasks and $162$ subtasks in multimodal understanding. Due to its extensive task coverage, MMT-Bench enables the evaluation of LVLMs using a task map, facilitating the discovery of in- and out-of-domain tasks. Evaluation results involving $30$ LVLMs such as the proprietary GPT-4V, GeminiProVision, and open-sourced InternVL-Chat, underscore the significant challenges posed by MMT-Bench. We anticipate that MMT-Bench will inspire the community to develop next-generation multimodal foundation models aimed at achieving general-purpose multimodal intelligence.