Abstract:Background and Objective: In the realm of ophthalmic imaging, accurate vascular segmentation is paramount for diagnosing and managing various eye diseases. Contemporary deep learning-based vascular segmentation models rival human accuracy but still face substantial challenges in accurately segmenting minuscule blood vessels in neural network applications. Due to the necessity of multiple downsampling operations in the CNN models, fine details from high-resolution images are inevitably lost. The objective of this study is to design a structure to capture the delicate and small blood vessels. Methods: To address these issues, we propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module, integrated within a UNet++ framework. Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules. The LD module is designed to adaptively adjust the focus on thin vessels that might be overlooked in standard convolution. The CA module improves the global understanding of vascular structures by aggregating the detailed features from the LD module with the high level features from the UNet++ architecture. Finally, we adopt a topological loss function based on persistent homology to constrain the topological continuity of the segmentation. Results: The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset, achieving an average accuracy (ACC) of 97.25%, 97.77%, 97.85%, 98.89%, and 98.21%, respectively. Conclusions: Empirical evidence shows that our method outperforms the current best models on different vessel segmentation datasets. Our source code is available at: https://github.com/AIEyeSystem/KalDeX.
Abstract:A major limitation of prompt tuning is its dependence on large labeled training datasets. Under few-shot learning settings, prompt tuning lags far behind full-model fine-tuning, limiting its scope of application. In this paper, we leverage the powerful LLMs to synthesize task-specific labeled data for training the soft prompts. We first introduce a distribution-aligned weighted generator tuning (DawGen) method to encourage generating in-distribution data that aligns with the few-shot real data. Then, we train soft prompts on both synthetic and real datasets using a gradient surgery approach, which eliminates the conflicting gradients from different data sources. Experiments on seven sentence-pair classification datasets demonstrate the effectiveness of our proposed method for boosting prompt tuning in few-shot learning settings. Results on QQP, MRPC, and SICK datasets are even comparable to the performance of transfer learning from large real-world datasets, showing the promise of synthetic data as an alternative for enhancing soft prompt tuning.
Abstract:In this paper, we briefly summarize the first competition on resource-limited infrared small target detection (namely, LimitIRSTD). This competition has two tracks, including weakly-supervised infrared small target detection (Track 1) and lightweight infrared small target detection (Track 2). 46 and 60 teams successfully registered and took part in Tracks 1 and Track 2, respectively. The top-performing methods and their results in each track are described with details. This competition inspires the community to explore the tough problems in the application of infrared small target detection, and ultimately promote the deployment of this technology under limited resource.
Abstract:Recent works in AI planning have proposed to combine LLMs with iterative tree-search algorithms like A* and MCTS, where LLMs are typically used to calculate the heuristic, guiding the planner towards the goal. However, combining these techniques is not trivial : LM-based heuristics are quite weak, incurring a high computational cost without a significant performance improvement. Existing methods to learn these heuristics do not consider the requirements of the planner, and typically need a lot of compute. Thus, in this work, we propose a distribution to downsample training data by identifying relevant data points to learn a performant heuristic, while constraining computational costs. To arrive at this model, we disentangle the requirements of the planner, in our case A* search, from that of the language model to generalise on this task. Surprisingly, we find an overlap between their requirements; A* requires more accurate predictions on nodes near the goal, and LMs need the same set of nodes for effective generalisation. With these insights, we can quantify the contribution of each node towards accelerating A* search, and subsequently derive a training distribution for learning LM-based heuristics. Following a recent work, we conduct our experiments on two classical planning domains, maze navigation and sokoban, with two test splits per domain, and two conventional loss functions. We reduce the number of iterations required to find the solutions by upto 13x, with a wall-clock speed-up of upto 5x.
Abstract:Small object detection (SOD) has been a longstanding yet challenging task for decades, with numerous datasets and algorithms being developed. However, they mainly focus on either visible or thermal modality, while visible-thermal (RGBT) bimodality is rarely explored. Although some RGBT datasets have been developed recently, the insufficient quantity, limited category, misaligned images and large target size cannot provide an impartial benchmark to evaluate multi-category visible-thermal small object detection (RGBT SOD) algorithms. In this paper, we build the first large-scale benchmark with high diversity for RGBT SOD (namely RGBT-Tiny), including 115 paired sequences, 93K frames and 1.2M manual annotations. RGBT-Tiny contains abundant targets (7 categories) and high-diversity scenes (8 types that cover different illumination and density variations). Note that, over 81% of targets are smaller than 16x16, and we provide paired bounding box annotations with tracking ID to offer an extremely challenging benchmark with wide-range applications, such as RGBT fusion, detection and tracking. In addition, we propose a scale adaptive fitness (SAFit) measure that exhibits high robustness on both small and large targets. The proposed SAFit can provide reasonable performance evaluation and promote detection performance. Based on the proposed RGBT-Tiny dataset and SAFit measure, extensive evaluations have been conducted, including 23 recent state-of-the-art algorithms that cover four different types (i.e., visible generic detection, visible SOD, thermal SOD and RGBT object detection). Project is available at https://github.com/XinyiYing24/RGBT-Tiny.
Abstract:Knowledge-based Visual Qustion-answering (K-VQA) necessitates the use of background knowledge beyond what is depicted in the image. Current zero-shot K-VQA methods usually translate an image to a single type of textual decision context and use a text-based model to answer the question based on it, which conflicts with the fact that K-VQA questions often require the combination of multiple question-answering strategies. In light of this, we propose Rationale-based Ensemble of Answer Context Tactics (REACT) to achieve a dynamic ensemble of multiple question-answering tactics, comprising Answer Candidate Generation (ACG) and Rationale-based Strategy Fusion (RSF). In ACG, we generate three distinctive decision contexts to provide different strategies for each question, resulting in the generation of three answer candidates. RSF generates automatic and mechanistic rationales from decision contexts for each candidate, allowing the model to select the correct answer from all candidates. We conduct comprehensive experiments on the OK-VQA and A-OKVQA datasets, and our method significantly outperforms state-of-the-art LLM-based baselines on all datasets.
Abstract:Story video-text alignment, a core task in computational story understanding, aims to align video clips with corresponding sentences in their descriptions. However, progress on the task has been held back by the scarcity of manually annotated video-text correspondence and the heavy concentration on English narrations of Hollywood movies. To address these issues, in this paper, we construct a large-scale multilingual video story dataset named Multilingual Synopses of Movie Narratives (M-SYMON), containing 13,166 movie summary videos from 7 languages, as well as manual annotation of fine-grained video-text correspondences for 101.5 hours of video. Training on the human annotated data from SyMoN outperforms the SOTA methods by 15.7 and 16.2 percentage points on Clip Accuracy and Sentence IoU scores, respectively, demonstrating the effectiveness of the annotations. As benchmarks for future research, we create 6 baseline approaches with different multilingual training strategies, compare their performance in both intra-lingual and cross-lingual setups, exemplifying the challenges of multilingual video-text alignment.
Abstract:Instruction tuning, or supervised finetuning on extensive task-specific data, is necessary for Large Vision-Language Models (LVLMs) to generalize well across a broad range of vision-language (VL) tasks. However, training on large VL datasets can become prohibitively expensive. In this work, we introduce COINCIDE, an effective and scalable data selection technique that uses a small model as a reference model to select visual instruction tuning data for efficient finetuning of a target LVLM, focusing on diversity and transferability. Specifically, we cluster the training data using internal activations from a small model, which identifies VL concept-skill compositions needed by a target LVLM. We then sample data from these diverse clusters by considering their density and transferability, or the ability to transfer well to other concept-skill compositions. This approach ensures the diversity of these compositions, which is vital for LVLM generalization. Extensive experiments demonstrate that COINCIDE achieves superior performance and data selection efficiency against 8 strong baselines on two distinct datasets: LLaVA-1.5 and Vision-Flan. Using only 20% of the LLaVA-1.5 dataset, COINCIDE achieves performance comparable to the LVLM finetuned on the whole dataset, with 70% reduction of the wall-clock running time. On the Vision-Flan dataset, our method achieves superior results with only 16.7% of the training data.
Abstract:Understanding spatial location and relationships is a fundamental capability for modern artificial intelligence systems. Insights from human spatial cognition provide valuable guidance in this domain. Recent neuroscientific discoveries have highlighted the role of grid cells as a fundamental neural component for spatial representation, including distance computation, path integration, and scale discernment. In this paper, we introduce a novel positional encoding scheme inspired by Fourier analysis and the latest findings in computational neuroscience regarding grid cells. Assuming that grid cells encode spatial position through a summation of Fourier basis functions, we demonstrate the translational invariance of the grid representation during inner product calculations. Additionally, we derive an optimal grid scale ratio for multi-dimensional Euclidean spaces based on principles of biological efficiency. Utilizing these computational principles, we have developed a **Grid**-cell inspired **Positional Encoding** technique, termed **GridPE**, for encoding locations within high-dimensional spaces. We integrated GridPE into the Pyramid Vision Transformer architecture. Our theoretical analysis shows that GridPE provides a unifying framework for positional encoding in arbitrary high-dimensional spaces. Experimental results demonstrate that GridPE significantly enhances the performance of transformers, underscoring the importance of incorporating neuroscientific insights into the design of artificial intelligence systems.
Abstract:Neural models produce promising results when solving Vehicle Routing Problems (VRPs), but often fall short in generalization. Recent attempts to enhance model generalization often incur unnecessarily large training cost or cannot be directly applied to other models solving different VRP variants. To address these issues, we take a novel perspective on model architecture in this study. Specifically, we propose a plug-and-play Entropy-based Scaling Factor (ESF) and a Distribution-Specific (DS) decoder to enhance the size and distribution generalization, respectively. ESF adjusts the attention weight pattern of the model towards familiar ones discovered during training when solving VRPs of varying sizes. The DS decoder explicitly models VRPs of multiple training distribution patterns through multiple auxiliary light decoders, expanding the model representation space to encompass a broader range of distributional scenarios. We conduct extensive experiments on both synthetic and widely recognized real-world benchmarking datasets and compare the performance with seven baseline models. The results demonstrate the effectiveness of using ESF and DS decoder to obtain a more generalizable model and showcase their applicability to solve different VRP variants, i.e., travelling salesman problem and capacitated VRP. Notably, our proposed generic components require minimal computational resources, and can be effortlessly integrated into conventional generalization strategies to further elevate model generalization.