Abstract:Recently there have been intensifying efforts to improve the understanding of Indonesian cultures by large language models (LLMs). An attractive source of cultural knowledge that has been largely overlooked is local journals of social science, which likely contain substantial cultural studies from a native perspective. We present a novel text dataset of journal article passages, created from 151 open-source Indonesian social science journals, called IndoSoSci. We demonstrate an effective recipe for injecting Indonesian cultural knowledge therein into LLMs: extracting the facts related to Indonesian culture, and apply retrieval-augmented generation (RAG) with LLM-generated hypothetical documents as queries during retrieval. The proposed recipe yields strong performance gains over several strong baselines on the IndoCulture benchmark. Additionally, by combining IndoSoSci with Indonesian Wikipedia, we set a new state-of-the-art accuracy on the IndoCulture benchmark.
Abstract:Cognitive anthropology suggests that the distinction of human intelligence lies in the ability to infer other individuals' knowledge states and understand their intentions. In comparison, our closest animal relative, chimpanzees, lack the capacity to do so. With this paper, we aim to evaluate LLM performance in the area of knowledge state tracking and estimation. We design two tasks to test (1) if LLMs can detect when story characters, through their actions, demonstrate knowledge they should not possess, and (2) if LLMs can predict story characters' next actions based on their own knowledge vs. objective truths they do not know. Results reveal that most current state-of-the-art LLMs achieve near-random performance on both tasks, and are substantially inferior to humans. We argue future LLM research should place more weight on the abilities of knowledge estimation and intention understanding.
Abstract:Vision-Language Models (VLMs) are increasingly used in safety-critical applications that require reliable visual grounding. However, these models often hallucinate details that are not present in the image to satisfy user prompts. While recent datasets and benchmarks have been introduced to evaluate systematic hallucinations in VLMs, many hallucination behaviors remain insufficiently characterized. In particular, prior work primarily focuses on object presence or absence, leaving it unclear how prompt phrasing and structural constraints can systematically induce hallucinations. In this paper, we investigate how different forms of prompt pressure influence hallucination behavior. We introduce Ghost-100, a procedurally generated dataset of synthetic scenes in which key visual details are deliberately removed, enabling controlled analysis of absence-based hallucinations. Using a structured 5-Level Prompt Intensity Framework, we vary prompts from neutral queries to toxic demands and rigid formatting constraints. We evaluate three representative open-weight VLMs: MiniCPM-V 2.6-8B, Qwen2-VL-7B, and Qwen3-VL-8B. Across all three models, hallucination rates do not increase monotonically with prompt intensity. All models exhibit reductions at higher intensity levels at different thresholds, though not all show sustained reduction under maximum coercion. These results suggest that current safety alignment is more effective at detecting semantic hostility than structural coercion, revealing model-specific limitations in handling compliance pressure. Our dataset is available at: https://github.com/bli1/tone-matters




Abstract:The ability to adapt to changing environments is crucial for the autonomous navigation systems of Unmanned Aerial Vehicles (UAVs). However, existing navigation systems adopt fixed execution configurations without considering environmental dynamics based on available computing resources, e.g., with a high execution frequency and task workload. This static approach causes rigid flight strategies and excessive computations, ultimately degrading flight performance or even leading to failures in UAVs. Despite the necessity for an adaptive system, dynamically adjusting workloads remains challenging, due to difficulties in quantifying environmental complexity and modeling the relationship between environment and system configuration. Aiming at adapting to dynamic environments, this paper proposes E-Navi, an environmental-adaptive navigation system for UAVs that dynamically adjusts task executions on the CPUs in response to environmental changes based on available computational resources. Specifically, the perception-planning pipeline of UAVs navigation system is redesigned through dynamic adaptation of mapping resolution and execution frequency, driven by the quantitative environmental complexity evaluations. In addition, E-Navi supports flexible deployment across hardware platforms with varying levels of computing capability. Extensive Hardware-In-the-Loop and real-world experiments demonstrate that the proposed system significantly outperforms the baseline method across various hardware platforms, achieving up to 53.9% navigation task workload reduction, up to 63.8% flight time savings, and delivering more stable velocity control.
Abstract:The movie industry is associated with an elevated level of risk, which necessitates the use of automated tools to predict box-office revenue and facilitate human decision-making. In this study, we build a sophisticated multimodal neural network that predicts box offices by grounding crowdsourced descriptive keywords of each movie in the visual information of the movie posters, thereby enhancing the learned keyword representations, resulting in a substantial reduction of 14.5% in box-office prediction error. The advanced revenue prediction model enables the analysis of the commercial viability of "copycat movies," or movies with substantial similarity to successful movies released recently. We do so by computing the influence of copycat features in box-office prediction. We find a positive relationship between copycat status and movie revenue. However, this effect diminishes when the number of similar movies and the similarity of their content increase. Overall, our work develops sophisticated deep learning tools for studying the movie industry and provides valuable business insight.




Abstract:Reasoning is central to purposeful action, yet most robotic foundation models map perception and instructions directly to control, which limits adaptability, generalization, and semantic grounding. We introduce Action Reasoning Models (ARMs), a class of robotic foundation models that integrate perception, planning, and control through a structured three-stage pipeline. Our model, MolmoAct, encodes observations and instructions into depth-aware perception tokens, generates mid-level spatial plans as editable trajectory traces, and predicts precise low-level actions, enabling explainable and steerable behavior. MolmoAct-7B-D achieves strong performance across simulation and real-world settings: 70.5% zero-shot accuracy on SimplerEnv Visual Matching tasks, surpassing closed-source Pi-0 and GR00T N1; 86.6% average success on LIBERO, including an additional 6.3% gain over ThinkAct on long-horizon tasks; and in real-world fine-tuning, an additional 10% (single-arm) and an additional 22.7% (bimanual) task progression over Pi-0-FAST. It also outperforms baselines by an additional 23.3% on out-of-distribution generalization and achieves top human-preference scores for open-ended instruction following and trajectory steering. Furthermore, we release, for the first time, the MolmoAct Dataset -- a mid-training robot dataset comprising over 10,000 high quality robot trajectories across diverse scenarios and tasks. Training with this dataset yields an average 5.5% improvement in general performance over the base model. We release all model weights, training code, our collected dataset, and our action reasoning dataset, establishing MolmoAct as both a state-of-the-art robotics foundation model and an open blueprint for building ARMs that transform perception into purposeful action through structured reasoning. Blogpost: https://allenai.org/blog/molmoact
Abstract:The Traveling Salesman Problem (TSP) is a well-known combinatorial optimization problem with broad real-world applications. Recent advancements in neural network-based TSP solvers have shown promising results. Nonetheless, these models often struggle to efficiently solve both small- and large-scale TSPs using the same set of pre-trained model parameters, limiting their practical utility. To address this issue, we introduce a novel neural TSP solver named GELD, built upon our proposed broad global assessment and refined local selection framework. Specifically, GELD integrates a lightweight Global-view Encoder (GE) with a heavyweight Local-view Decoder (LD) to enrich embedding representation while accelerating the decision-making process. Moreover, GE incorporates a novel low-complexity attention mechanism, allowing GELD to achieve low inference latency and scalability to larger-scale TSPs. Additionally, we propose a two-stage training strategy that utilizes training instances of different sizes to bolster GELD's generalization ability. Extensive experiments conducted on both synthetic and real-world datasets demonstrate that GELD outperforms seven state-of-the-art models considering both solution quality and inference speed. Furthermore, GELD can be employed as a post-processing method to significantly elevate the quality of the solutions derived by existing neural TSP solvers via spending affordable additional computing time. Notably, GELD is shown as capable of solving TSPs with up to 744,710 nodes, first-of-its-kind to solve this large size TSP without relying on divide-and-conquer strategies to the best of our knowledge.




Abstract:Multi-task model merging aims to consolidate knowledge from multiple fine-tuned task-specific experts into a unified model while minimizing performance degradation. Existing methods primarily approach this by minimizing differences between task-specific experts and the unified model, either from a parameter-level or a task-loss perspective. However, parameter-level methods exhibit a significant performance gap compared to the upper bound, while task-loss approaches entail costly secondary training procedures. In contrast, we observe that performance degradation closely correlates with feature drift, i.e., differences in feature representations of the same sample caused by model merging. Motivated by this observation, we propose Layer-wise Optimal Task Vector Merging (LOT Merging), a technique that explicitly minimizes feature drift between task-specific experts and the unified model in a layer-by-layer manner. LOT Merging can be formulated as a convex quadratic optimization problem, enabling us to analytically derive closed-form solutions for the parameters of linear and normalization layers. Consequently, LOT Merging achieves efficient model consolidation through basic matrix operations. Extensive experiments across vision and vision-language benchmarks demonstrate that LOT Merging significantly outperforms baseline methods, achieving improvements of up to 4.4% (ViT-B/32) over state-of-the-art approaches.
Abstract:Evaluating the video understanding capabilities of Video-Language Models (VLMs) remains a significant challenge. We propose a long-context video understanding benchmark, Causal2Needles, that assesses two crucial abilities insufficiently evaluated by existing benchmarks: (1) the ability to extract information from two separate locations in a long video and understand them jointly, and (2) the ability to model the world in terms of cause and effect in human behaviors. Specifically, Causal2Needles introduces 2-needle questions, which require extracting information from both the cause and effect human-behavior events in a long video and the associated narration text. To prevent textual bias, these questions comprise two complementary formats: one asking to identify the video clip containing the answer, and one asking for the textual description of an unrelated visual detail from that video clip. Our experiments reveal that models excelling in pre-existing benchmarks struggle with 2-needle visual grounding, and the model performance is negatively correlated with the distance between the two needles. These findings highlight critical limitations in current VLMs.
Abstract:Pointing serves as a fundamental and intuitive mechanism for grounding language within visual contexts, with applications spanning robotics, assistive technologies, and interactive AI systems. While recent multimodal models have started to support pointing capabilities, existing benchmarks typically focus only on referential object localization tasks. We introduce PointArena, a comprehensive platform for evaluating multimodal pointing across diverse reasoning scenarios. PointArena comprises three components: (1) Point-Bench, a curated dataset containing approximately 1,000 pointing tasks across five reasoning categories; (2) Point-Battle, an interactive, web-based arena facilitating blind, pairwise model comparisons, which has already gathered over 4,500 anonymized votes; and (3) Point-Act, a real-world robotic manipulation system allowing users to directly evaluate multimodal model pointing capabilities in practical settings. We conducted extensive evaluations of both state-of-the-art open-source and proprietary multimodal models. Results indicate that Molmo-72B consistently outperforms other models, though proprietary models increasingly demonstrate comparable performance. Additionally, we find that supervised training specifically targeting pointing tasks significantly enhances model performance. Across our multi-stage evaluation pipeline, we also observe strong correlations, underscoring the critical role of precise pointing capabilities in enabling multimodal models to effectively bridge abstract reasoning with concrete, real-world actions. Project page: https://pointarena.github.io/