University of South Australia
Abstract:This report introduces Make-A-Character 2, an advanced system for generating high-quality 3D characters from single portrait photographs, ideal for game development and digital human applications. Make-A-Character 2 builds upon its predecessor by incorporating several significant improvements for image-based head generation. We utilize the IC-Light method to correct non-ideal illumination in input photos and apply neural network-based color correction to harmonize skin tones between the photos and game engine renders. We also employ the Hierarchical Representation Network to capture high-frequency facial structures and conduct adaptive skeleton calibration for accurate and expressive facial animations. The entire image-to-3D-character generation process takes less than 2 minutes. Furthermore, we leverage transformer architecture to generate co-speech facial and gesture actions, enabling real-time conversation with the generated character. These technologies have been integrated into our conversational AI avatar products.
Abstract:Multimodal 3D object detection has garnered considerable interest in autonomous driving. However, multimodal detectors suffer from dimension mismatches that derive from fusing 3D points with 2D pixels coarsely, which leads to sub-optimal fusion performance. In this paper, we propose a multimodal framework FGU3R to tackle the issue mentioned above via unified 3D representation and fine-grained fusion, which consists of two important components. First, we propose an efficient feature extractor for raw and pseudo points, termed Pseudo-Raw Convolution (PRConv), which modulates multimodal features synchronously and aggregates the features from different types of points on key points based on multimodal interaction. Second, a Cross-Attention Adaptive Fusion (CAAF) is designed to fuse homogeneous 3D RoI (Region of Interest) features adaptively via a cross-attention variant in a fine-grained manner. Together they make fine-grained fusion on unified 3D representation. The experiments conducted on the KITTI and nuScenes show the effectiveness of our proposed method.
Abstract:Plausibility Estimation (PE) plays a crucial role for enabling language models to objectively comprehend the real world. While large language models (LLMs) demonstrate remarkable capabilities in PE tasks but sometimes produce trivial commonsense errors due to the complexity of commonsense knowledge. They lack two key traits of an ideal PE model: a) Language-explainable: relying on critical word segments for decisions, and b) Commonsense-sensitive: detecting subtle linguistic variations in commonsense. To address these issues, we propose a novel model-agnostic method, referred to as Commonsense Counterfactual Samples Generating (CCSG). By training PE models with CCSG, we encourage them to focus on critical words, thereby enhancing both their language-explainable and commonsense-sensitive capabilities. Specifically, CCSG generates counterfactual samples by strategically replacing key words and introducing low-level dropout within sentences. These counterfactual samples are then incorporated into a sentence-level contrastive training framework to further enhance the model's learning process. Experimental results across nine diverse datasets demonstrate the effectiveness of CCSG in addressing commonsense reasoning challenges, with our CCSG method showing 3.07% improvement against the SOTA methods.
Abstract:Traditionally, AI development for two-player zero-sum games has relied on two primary techniques: decision trees and reinforcement learning (RL). A common approach involves using a fixed decision tree as one player's strategy while training an RL agent as the opponent to identify vulnerabilities in the decision tree, thereby improving its strategic strength iteratively. However, this process often requires significant human intervention to refine the decision tree after identifying its weaknesses, resulting in inefficiencies and hindering full automation of the strategy enhancement process. Fortunately, the advent of Large Language Models (LLMs) offers a transformative opportunity to automate the process. We propose RL-LLM-DT, an automatic decision tree generation method based on RL Evaluation and LLM Enhancement. Given an initial decision tree, the method involves two important iterative steps. Response Policy Search: RL is used to discover counter-strategies targeting the decision tree. Policy Improvement: LLMs analyze failure scenarios and generate improved decision tree code. In our method, RL focuses on finding the decision tree's flaws while LLM is prompted to generate an improved version of the decision tree. The iterative refinement process terminates when RL can't find any flaw of the tree or LLM fails to improve the tree. To evaluate the effectiveness of this integrated approach, we conducted experiments in a curling game. After iterative refinements, our curling AI based on the decision tree ranks first on the Jidi platform among 34 curling AIs in total, which demonstrates that LLMs can significantly enhance the robustness and adaptability of decision trees, representing a substantial advancement in the field of Game AI. Our code is available at https://github.com/Linjunjie99/RL-LLM-DT.
Abstract:Causal discovery is a crucial initial step in establishing causality from empirical data and background knowledge. Numerous algorithms have been developed for this purpose. Among them, the score-matching method has demonstrated superior performance across various evaluation metrics, particularly for the commonly encountered Additive Nonlinear Causal Models. However, current score-matching-based algorithms are primarily designed to analyze independent and identically distributed (i.i.d.) data. More importantly, they suffer from high computational complexity due to the pruning step required for handling dense Directed Acyclic Graphs (DAGs). To enhance the scalability of score matching, we have developed a new parent-finding subroutine for leaf nodes in DAGs, significantly accelerating the most time-consuming part of the process: the pruning step. This improvement results in an efficiency-lifted score matching algorithm, termed Parent Identification-based Causal structure learning for both i.i.d. and temporal data on networKs, or PICK. The new score-matching algorithm extends the scope of existing algorithms and can handle static and temporal data on networks with weak network interference. Our proposed algorithm can efficiently cope with increasingly complex datasets that exhibit spatial and temporal dependencies, commonly encountered in academia and industry. The proposed algorithm can accelerate score-matching-based methods while maintaining high accuracy in real-world applications.
Abstract:Querying causal effects from time-series data is important across various fields, including healthcare, economics, climate science, and epidemiology. However, this task becomes complex in the existence of time-varying latent confounders, which affect both treatment and outcome variables over time and can introduce bias in causal effect estimation. Traditional instrumental variable (IV) methods are limited in addressing such complexities due to the need for predefined IVs or strong assumptions that do not hold in dynamic settings. To tackle these issues, we develop a novel Time-varying Conditional Instrumental Variables (CIV) for Debiasing causal effect estimation, referred to as TDCIV. TDCIV leverages Long Short-Term Memory (LSTM) and Variational Autoencoder (VAE) models to disentangle and learn the representations of time-varying CIV and its conditioning set from proxy variables without prior knowledge. Under the assumptions of the Markov property and availability of proxy variables, we theoretically establish the validity of these learned representations for addressing the biases from time-varying latent confounders, thus enabling accurate causal effect estimation. Our proposed TDCIV is the first to effectively learn time-varying CIV and its associated conditioning set without relying on domain-specific knowledge.
Abstract:Total hip arthroplasty (THA) relies on accurate landmark detection from radiographic images, but unstructured data caused by irregular patient postures or occluded anatomical markers pose significant challenges for existing methods. To address this, we propose UNSCT-HRNet (Unstructured CT - High-Resolution Net), a deep learning-based framework that integrates a Spatial Relationship Fusion (SRF) module and an Uncertainty Estimation (UE) module. The SRF module, utilizing coordinate convolution and polarized attention, enhances the model's ability to capture complex spatial relationships. Meanwhile, the UE module which based on entropy ensures predictions are anatomically relevant. For unstructured data, the proposed method can predict landmarks without relying on the fixed number of points, which shows higher accuracy and better robustness comparing with the existing methods. Our UNSCT-HRNet demonstrates over a 60% improvement across multiple metrics in unstructured data. The experimental results also reveal that our approach maintains good performance on the structured dataset. Overall, the proposed UNSCT-HRNet has the potential to be used as a new reliable, automated solution for THA surgical planning and postoperative monitoring.
Abstract:Facial landmark detection is a fundamental problem in computer vision for many downstream applications. This paper introduces a new facial landmark detector based on vision transformers, which consists of two unique designs: Dual Vision Transformer (D-ViT) and Long Skip Connections (LSC). Based on the observation that the channel dimension of feature maps essentially represents the linear bases of the heatmap space, we propose learning the interconnections between these linear bases to model the inherent geometric relations among landmarks via Channel-split ViT. We integrate such channel-split ViT into the standard vision transformer (i.e., spatial-split ViT), forming our Dual Vision Transformer to constitute the prediction blocks. We also suggest using long skip connections to deliver low-level image features to all prediction blocks, thereby preventing useful information from being discarded by intermediate supervision. Extensive experiments are conducted to evaluate the performance of our proposal on the widely used benchmarks, i.e., WFLW, COFW, and 300W, demonstrating that our model outperforms the previous SOTAs across all three benchmarks.
Abstract:The issue of source-free time-series domain adaptations still gains scarce research attentions. On the other hand, existing approaches rely solely on time-domain features ignoring frequency components providing complementary information. This paper proposes Time Frequency Domain Adaptation (TFDA), a method to cope with the source-free time-series domain adaptation problems. TFDA is developed with a dual branch network structure fully utilizing both time and frequency features in delivering final predictions. It induces pseudo-labels based on a neighborhood concept where predictions of a sample group are aggregated to generate reliable pseudo labels. The concept of contrastive learning is carried out in both time and frequency domains with pseudo label information and a negative pair exclusion strategy to make valid neighborhood assumptions. In addition, the time-frequency consistency technique is proposed using the self-distillation strategy while the uncertainty reduction strategy is implemented to alleviate uncertainties due to the domain shift problem. Last but not least, the curriculum learning strategy is integrated to combat noisy pseudo labels. Our experiments demonstrate the advantage of our approach over prior arts with noticeable margins in benchmark problems.
Abstract:Intervention intuition is often used in model explanation where the intervention effect of a feature on the outcome is quantified by the difference of a model prediction when the feature value is changed from the current value to the baseline value. Such a model intervention effect of a feature is inherently association. In this paper, we will study the conditions when an intuitive model intervention effect has a causal interpretation, i.e., when it indicates whether a feature is a direct cause of the outcome. This work links the model intervention effect to the causal interpretation of a model. Such an interpretation capability is important since it indicates whether a machine learning model is trustworthy to domain experts. The conditions also reveal the limitations of using a model intervention effect for causal interpretation in an environment with unobserved features. Experiments on semi-synthetic datasets have been conducted to validate theorems and show the potential for using the model intervention effect for model interpretation.