Abstract:Portrait video editing focuses on modifying specific attributes of portrait videos, guided by audio or video streams. Previous methods typically either concentrate on lip-region reenactment or require training specialized models to extract keypoints for motion transfer to a new identity. In this paper, we introduce a training-free universal portrait video editing framework that provides a versatile and adaptable editing strategy. This framework supports portrait appearance editing conditioned on the changed first reference frame, as well as lip editing conditioned on varied speech, or a combination of both. It is based on a Unified Animation Control (UAC) mechanism with source inversion latents to edit the entire portrait, including visual-driven shape control, audio-driven speaking control, and inter-frame temporal control. Furthermore, our method can be adapted to different scenarios by adjusting the initial reference frame, enabling detailed editing of portrait videos with specific head rotations and facial expressions. This comprehensive approach ensures a holistic and flexible solution for portrait video editing. The experimental results show that our model can achieve more accurate and synchronized lip movements for the lip editing task, as well as more flexible motion transfer for the appearance editing task. Demo is available at https://alice01010101.github.io/RASA/.
Abstract:While existing Audio-Visual Speech Separation (AVSS) methods primarily concentrate on the audio-visual fusion strategy for two-speaker separation, they demonstrate a severe performance drop in the multi-speaker separation scenarios. Typically, AVSS methods employ guiding videos to sequentially isolate individual speakers from the given audio mixture, resulting in notable missing and noisy parts across various segments of the separated speech. In this study, we propose a simultaneous multi-speaker separation framework that can facilitate the concurrent separation of multiple speakers within a singular process. We introduce speaker-wise interactions to establish distinctions and correlations among speakers. Experimental results on the VoxCeleb2 and LRS3 datasets demonstrate that our method achieves state-of-the-art performance in separating mixtures with 2, 3, 4, and 5 speakers, respectively. Additionally, our model can utilize speakers with complete audio-visual information to mitigate other visual-deficient speakers, thereby enhancing its resilience to missing visual cues. We also conduct experiments where visual information for specific speakers is entirely absent or visual frames are partially missing. The results demonstrate that our model consistently outperforms others, exhibiting the smallest performance drop across all settings involving 2, 3, 4, and 5 speakers.