Abstract:In this work, we introduce Token Condensation as Adaptation (TCA), a training-free approach designed to mitigate distribution shifts encountered by vision-language models (VLMs) during test-time inference. TCA bridges distribution gaps at the patch level by condensing image tokens that exhibit low attentiveness to the <cls> token. Recognizing the <cls> token may correspond to universal concepts, TCA identifies and tracks the most reliable <cls> tokens that align specifically with target classes from historical data streams. To achieve this, we propose a context token reservoir (CTR), which retains tokens with the lowest uncertainty as ``anchors" to guide the preservation of class-relevant tokens during inference. These anchors, in turn, act as token-level classifiers to correct VLM predictions and improve visual-text alignment. Utilizing anchors sampled from CTR, TCA condenses tokens through two operations: (1) pruning class-irrelevant tokens that consistently rank low across all attention heads to reach cross-head consensus on their irrelevance, and (2) merging the remaining class-ambiguous tokens into representative centers using coreset selection, maintaining linear computational complexity. As the first method to explore token efficiency in test-time adaptation, TCA consistently demonstrates superior performance across cross-dataset and out-of-distribution adaptation tasks, reducing GFLOPs by 12.2% to 48.9% while achieving accuracy improvements up to 21.4% against the strongest baseline without introducing additional parameters.
Abstract:In modern agriculture, precise monitoring of plants and fruits is crucial for tasks such as high-throughput phenotyping and automated harvesting. This paper addresses the challenge of reconstructing accurate 3D shapes of fruits from partial views, which is common in agricultural settings. We introduce CF-PRNet, a coarse-to-fine prototype refining network, leverages high-resolution 3D data during the training phase but requires only a single RGB-D image for real-time inference. Our approach begins by extracting the incomplete point cloud data that constructed from a partial view of a fruit with a series of convolutional blocks. The extracted features inform the generation of scaling vectors that refine two sequentially constructed 3D mesh prototypes - one coarse and one fine-grained. This progressive refinement facilitates the detailed completion of the final point clouds, achieving detailed and accurate reconstructions. CF-PRNet demonstrates excellent performance metrics with a Chamfer Distance of 3.78, an F1 Score of 66.76%, a Precision of 56.56%, and a Recall of 85.31%, and win the first place in the Shape Completion and Reconstruction of Sweet Peppers Challenge.
Abstract:LiDAR-based outdoor 3D object detection has received widespread attention. However, training 3D detectors from the LiDAR point cloud typically relies on expensive bounding box annotations. This paper presents OC3D, an innovative weakly supervised method requiring only coarse clicks on the bird' s eye view of the 3D point cloud. A key challenge here is the absence of complete geometric descriptions of the target objects from such simple click annotations. To address this problem, our proposed OC3D adopts a two-stage strategy. In the first stage, we initially design a novel dynamic and static classification strategy and then propose the Click2Box and Click2Mask modules to generate box-level and mask-level pseudo-labels for static and dynamic instances, respectively. In the second stage, we design a Mask2Box module, leveraging the learning capabilities of neural networks to update mask-level pseudo-labels, which contain less information, to box level pseudo-labels. Experimental results on the widely used KITTI and nuScenes datasets demonstrate that our OC3D with only coarse clicks achieves state-of-the-art performance compared to weakly-supervised 3D detection methods. Combining OC3D with a missing click mining strategy, we propose a OC3D++ pipeline, which requires only 0.2% annotation cost in the KITTI dataset to achieve performance comparable to fully supervised methods.
Abstract:Conventional Text-guided single-image editing approaches require a two-step process, including fine-tuning the target text embedding for over 1K iterations and the generative model for another 1.5K iterations. Although it ensures that the resulting image closely aligns with both the input image and the target text, this process often requires 7 minutes per image, posing a challenge for practical application due to its time-intensive nature. To address this bottleneck, we introduce FastEdit, a fast text-guided single-image editing method with semantic-aware diffusion fine-tuning, dramatically accelerating the editing process to only 17 seconds. FastEdit streamlines the generative model's fine-tuning phase, reducing it from 1.5K to a mere 50 iterations. For diffusion fine-tuning, we adopt certain time step values based on the semantic discrepancy between the input image and target text. Furthermore, FastEdit circumvents the initial fine-tuning step by utilizing an image-to-image model that conditions on the feature space, rather than the text embedding space. It can effectively align the target text prompt and input image within the same feature space and save substantial processing time. Additionally, we apply the parameter-efficient fine-tuning technique LoRA to U-net. With LoRA, FastEdit minimizes the model's trainable parameters to only 0.37\% of the original size. At the same time, we can achieve comparable editing outcomes with significantly reduced computational overhead. We conduct extensive experiments to validate the editing performance of our approach and show promising editing capabilities, including content addition, style transfer, background replacement, and posture manipulation, etc.
Abstract:Class-agnostic object detection (OD) can be a cornerstone or a bottleneck for many downstream vision tasks. Despite considerable advancements in bottom-up and multi-object discovery methods that leverage basic visual cues to identify salient objects, consistently achieving a high recall rate remains difficult due to the diversity of object types and their contextual complexity. In this work, we investigate using vision-language models (VLMs) to enhance object detection via a self-supervised prompt learning strategy. Our initial findings indicate that manually crafted text queries often result in undetected objects, primarily because detection confidence diminishes when the query words exhibit semantic overlap. To address this, we propose a Dispersing Prompt Expansion (DiPEx) approach. DiPEx progressively learns to expand a set of distinct, non-overlapping hyperspherical prompts to enhance recall rates, thereby improving performance in downstream tasks such as out-of-distribution OD. Specifically, DiPEx initiates the process by self-training generic parent prompts and selecting the one with the highest semantic uncertainty for further expansion. The resulting child prompts are expected to inherit semantics from their parent prompts while capturing more fine-grained semantics. We apply dispersion losses to ensure high inter-class discrepancy among child prompts while preserving semantic consistency between parent-child prompt pairs. To prevent excessive growth of the prompt sets, we utilize the maximum angular coverage (MAC) of the semantic space as a criterion for early termination. We demonstrate the effectiveness of DiPEx through extensive class-agnostic OD and OOD-OD experiments on MS-COCO and LVIS, surpassing other prompting methods by up to 20.1% in AR and achieving a 21.3% AP improvement over SAM. The code is available at https://github.com/jason-lim26/DiPEx.
Abstract:LiDAR-based 3D object detection is pivotal across many applications, yet the performance of such detection systems often degrades after deployment, especially when faced with unseen test point clouds originating from diverse locations or subjected to corruption. In this work, we introduce a new online adaptation framework for detectors named Model Synergy (MOS). Specifically, MOS dynamically assembles best-fit supermodels for each test batch from a bank of historical checkpoints, leveraging long-term knowledge to guide model updates without forgetting. The model assembly is directed by the proposed synergy weights (SW), employed for weighted averaging of the selected checkpoints to minimize redundancy in the composite supermodel. These weights are calculated by evaluating the similarity of predicted bounding boxes on test data and the feature independence among model pairs in the bank. To maintain an informative yet compact model bank, we pop out checkpoints with the lowest average SW scores and insert newly updated model weights. Our method was rigorously tested against prior test-time domain adaptation strategies on three datasets and under eight types of corruptions, demonstrating its superior adaptability to changing scenes and conditions. Remarkably, our approach achieved a 67.3% increase in performance in a complex "cross-corruption" scenario, which involves cross-dataset inconsistencies and real-world scene corruptions, providing a more realistic testbed of adaptation capabilities. The code is available at https://github.com/zhuoxiao-chen/MOS.
Abstract:LiDAR-based 3D object detection has seen impressive advances in recent times. However, deploying trained 3D detectors in the real world often yields unsatisfactory performance when the distribution of the test data significantly deviates from the training data due to different weather conditions, object sizes, \textit{etc}. A key factor in this performance degradation is the diminished generalizability of pre-trained models, which creates a sharp loss landscape during training. Such sharpness, when encountered during testing, can precipitate significant performance declines, even with minor data variations. To address the aforementioned challenges, we propose \textbf{dual-perturbation optimization (DPO)} for \textbf{\underline{T}est-\underline{t}ime \underline{A}daptation in \underline{3}D \underline{O}bject \underline{D}etection (TTA-3OD)}. We minimize the sharpness to cultivate a flat loss landscape to ensure model resiliency to minor data variations, thereby enhancing the generalization of the adaptation process. To fully capture the inherent variability of the test point clouds, we further introduce adversarial perturbation to the input BEV features to better simulate the noisy test environment. As the dual perturbation strategy relies on trustworthy supervision signals, we utilize a reliable Hungarian matcher to filter out pseudo-labels sensitive to perturbations. Additionally, we introduce early Hungarian cutoff to avoid error accumulation from incorrect pseudo-labels by halting the adaptation process. Extensive experiments across three types of transfer tasks demonstrate that the proposed DPO significantly surpasses previous state-of-the-art approaches, specifically on Waymo $\rightarrow$ KITTI, outperforming the most competitive baseline by 57.72\% in $\text{AP}_\text{3D}$ and reaching 91\% of the fully supervised upper bound.
Abstract:The field of novel-view synthesis has recently witnessed the emergence of 3D Gaussian Splatting, which represents scenes in a point-based manner and renders through rasterization. This methodology, in contrast to Radiance Fields that rely on ray tracing, demonstrates superior rendering quality and speed. However, the explicit and unstructured nature of 3D Gaussians poses a significant storage challenge, impeding its broader application. To address this challenge, we introduce the Gaussian-Forest modeling framework, which hierarchically represents a scene as a forest of hybrid 3D Gaussians. Each hybrid Gaussian retains its unique explicit attributes while sharing implicit ones with its sibling Gaussians, thus optimizing parameterization with significantly fewer variables. Moreover, adaptive growth and pruning strategies are designed, ensuring detailed representation in complex regions and a notable reduction in the number of required Gaussians. Extensive experiments demonstrate that Gaussian-Forest not only maintains comparable speed and quality but also achieves a compression rate surpassing 10 times, marking a significant advancement in efficient scene modeling. Codes are available at https://github.com/Xian-Bei/GaussianForest.
Abstract:In the field of 3D object detection tasks, fusing heterogeneous features from LiDAR and camera sensors into a unified Bird's Eye View (BEV) representation is a widely adopted paradigm. However, existing methods are often compromised by imprecise sensor calibration, resulting in feature misalignment in LiDAR-camera BEV fusion. Moreover, such inaccuracies result in errors in depth estimation for the camera branch, ultimately causing misalignment between LiDAR and camera BEV features. In this work, we propose a novel ContrastAlign approach that utilizes contrastive learning to enhance the alignment of heterogeneous modalities, thereby improving the robustness of the fusion process. Specifically, our approach includes the L-Instance module, which directly outputs LiDAR instance features within LiDAR BEV features. Then, we introduce the C-Instance module, which predicts camera instance features through RoI (Region of Interest) pooling on the camera BEV features. We propose the InstanceFusion module, which utilizes contrastive learning to generate similar instance features across heterogeneous modalities. We then use graph matching to calculate the similarity between the neighboring camera instance features and the similarity instance features to complete the alignment of instance features. Our method achieves state-of-the-art performance, with an mAP of 70.3%, surpassing BEVFusion by 1.8% on the nuScenes validation set. Importantly, our method outperforms BEVFusion by 7.3% under conditions with misalignment noise.
Abstract:In the realm of autonomous driving, robust perception under out-of-distribution conditions is paramount for the safe deployment of vehicles. Challenges such as adverse weather, sensor malfunctions, and environmental unpredictability can severely impact the performance of autonomous systems. The 2024 RoboDrive Challenge was crafted to propel the development of driving perception technologies that can withstand and adapt to these real-world variabilities. Focusing on four pivotal tasks -- BEV detection, map segmentation, semantic occupancy prediction, and multi-view depth estimation -- the competition laid down a gauntlet to innovate and enhance system resilience against typical and atypical disturbances. This year's challenge consisted of five distinct tracks and attracted 140 registered teams from 93 institutes across 11 countries, resulting in nearly one thousand submissions evaluated through our servers. The competition culminated in 15 top-performing solutions, which introduced a range of innovative approaches including advanced data augmentation, multi-sensor fusion, self-supervised learning for error correction, and new algorithmic strategies to enhance sensor robustness. These contributions significantly advanced the state of the art, particularly in handling sensor inconsistencies and environmental variability. Participants, through collaborative efforts, pushed the boundaries of current technologies, showcasing their potential in real-world scenarios. Extensive evaluations and analyses provided insights into the effectiveness of these solutions, highlighting key trends and successful strategies for improving the resilience of driving perception systems. This challenge has set a new benchmark in the field, providing a rich repository of techniques expected to guide future research in this field.