Abstract:In this paper, we analyze the viewpoint stability of foundational models - specifically, their sensitivity to changes in viewpoint- and define instability as significant feature variations resulting from minor changes in viewing angle, leading to generalization gaps in 3D reasoning tasks. We investigate nine foundational models, focusing on their responses to viewpoint changes, including the often-overlooked accidental viewpoints where specific camera orientations obscure an object's true 3D structure. Our methodology enables recognizing and classifying out-of-distribution (OOD), accidental, and stable viewpoints using feature representations alone, without accessing the actual images. Our findings indicate that while foundation models consistently encode accidental viewpoints, they vary in their interpretation of OOD viewpoints due to inherent biases, at times leading to object misclassifications based on geometric resemblance. Through quantitative and qualitative evaluations on three downstream tasks - classification, VQA, and 3D reconstruction - we illustrate the impact of viewpoint instability and underscore the importance of feature robustness across diverse viewing conditions.
Abstract:Dataset Distillation (DD) is designed to generate condensed representations of extensive image datasets, enhancing training efficiency. Despite recent advances, there remains considerable potential for improvement, particularly in addressing the notable redundancy within the color space of distilled images. In this paper, we propose AutoPalette, a framework that minimizes color redundancy at the individual image and overall dataset levels, respectively. At the image level, we employ a palette network, a specialized neural network, to dynamically allocate colors from a reduced color space to each pixel. The palette network identifies essential areas in synthetic images for model training and consequently assigns more unique colors to them. At the dataset level, we develop a color-guided initialization strategy to minimize redundancy among images. Representative images with the least replicated color patterns are selected based on the information gain. A comprehensive performance study involving various datasets and evaluation scenarios is conducted, demonstrating the superior performance of our proposed color-aware DD compared to existing DD methods. The code is available at \url{https://github.com/KeViNYuAn0314/AutoPalette}.
Abstract:Accurately estimating model performance poses a significant challenge, particularly in scenarios where the source and target domains follow different data distributions. Most existing performance prediction methods heavily rely on the source data in their estimation process, limiting their applicability in a more realistic setting where only the trained model is accessible. The few methods that do not require source data exhibit considerably inferior performance. In this work, we propose a source-free approach centred on uncertainty-based estimation, using a generative model for calibration in the absence of source data. We establish connections between our approach for unsupervised calibration and temperature scaling. We then employ a gradient-based strategy to evaluate the correctness of the calibrated predictions. Our experiments on benchmark object recognition datasets reveal that existing source-based methods fall short with limited source sample availability. Furthermore, our approach significantly outperforms the current state-of-the-art source-free and source-based methods, affirming its effectiveness in domain-invariant performance estimation.
Abstract:In this demo we present a web-based application for selecting an effective pre-trained dense retriever to use on a private collection. Our system, DenseQuest, provides unsupervised selection and ranking capabilities to predict the best dense retriever among a pool of available dense retrievers, tailored to an uploaded target collection. DenseQuest implements a number of existing approaches, including a recent, highly effective method powered by Large Language Models (LLMs), which requires neither queries nor relevance judgments. The system is designed to be intuitive and easy to use for those information retrieval engineers and researchers who need to identify a general-purpose dense retrieval model to encode or search a new private target collection. Our demonstration illustrates conceptual architecture and the different use case scenarios of the system implemented on the cloud, enabling universal access and use. DenseQuest is available at https://densequest.ielab.io.
Abstract:Class-agnostic object detection (OD) can be a cornerstone or a bottleneck for many downstream vision tasks. Despite considerable advancements in bottom-up and multi-object discovery methods that leverage basic visual cues to identify salient objects, consistently achieving a high recall rate remains difficult due to the diversity of object types and their contextual complexity. In this work, we investigate using vision-language models (VLMs) to enhance object detection via a self-supervised prompt learning strategy. Our initial findings indicate that manually crafted text queries often result in undetected objects, primarily because detection confidence diminishes when the query words exhibit semantic overlap. To address this, we propose a Dispersing Prompt Expansion (DiPEx) approach. DiPEx progressively learns to expand a set of distinct, non-overlapping hyperspherical prompts to enhance recall rates, thereby improving performance in downstream tasks such as out-of-distribution OD. Specifically, DiPEx initiates the process by self-training generic parent prompts and selecting the one with the highest semantic uncertainty for further expansion. The resulting child prompts are expected to inherit semantics from their parent prompts while capturing more fine-grained semantics. We apply dispersion losses to ensure high inter-class discrepancy among child prompts while preserving semantic consistency between parent-child prompt pairs. To prevent excessive growth of the prompt sets, we utilize the maximum angular coverage (MAC) of the semantic space as a criterion for early termination. We demonstrate the effectiveness of DiPEx through extensive class-agnostic OD and OOD-OD experiments on MS-COCO and LVIS, surpassing other prompting methods by up to 20.1% in AR and achieving a 21.3% AP improvement over SAM. The code is available at https://github.com/jason-lim26/DiPEx.
Abstract:LiDAR-based 3D object detection is pivotal across many applications, yet the performance of such detection systems often degrades after deployment, especially when faced with unseen test point clouds originating from diverse locations or subjected to corruption. In this work, we introduce a new online adaptation framework for detectors named Model Synergy (MOS). Specifically, MOS dynamically assembles best-fit supermodels for each test batch from a bank of historical checkpoints, leveraging long-term knowledge to guide model updates without forgetting. The model assembly is directed by the proposed synergy weights (SW), employed for weighted averaging of the selected checkpoints to minimize redundancy in the composite supermodel. These weights are calculated by evaluating the similarity of predicted bounding boxes on test data and the feature independence among model pairs in the bank. To maintain an informative yet compact model bank, we pop out checkpoints with the lowest average SW scores and insert newly updated model weights. Our method was rigorously tested against prior test-time domain adaptation strategies on three datasets and under eight types of corruptions, demonstrating its superior adaptability to changing scenes and conditions. Remarkably, our approach achieved a 67.3% increase in performance in a complex "cross-corruption" scenario, which involves cross-dataset inconsistencies and real-world scene corruptions, providing a more realistic testbed of adaptation capabilities. The code is available at https://github.com/zhuoxiao-chen/MOS.
Abstract:This paper introduces a novel unsupervised technique that utilizes large language models (LLMs) to determine the most suitable dense retriever for a specific test(target) corpus. Selecting the appropriate dense retriever is vital for numerous IR applications that employ these retrievers, trained on public datasets, to encode or conduct searches within a new private target corpus. The effectiveness of a dense retriever can significantly diminish when applied to a target corpus that diverges in domain or task from the original training set. The problem becomes more pronounced in cases where the target corpus is unlabeled, e.g. in zero-shot scenarios, rendering direct evaluation of the model's effectiveness on the target corpus unattainable. Therefore, the unsupervised selection of an optimally pre-trained dense retriever, especially under conditions of domain shift, emerges as a critical challenge. Existing methodologies for ranking dense retrievers fall short in addressing these domain shift scenarios. To tackle this, our method capitalizes on LLMs to create pseudo-relevant queries, labels, and reference lists by analyzing a subset of documents from the target corpus. This allows for the ranking of dense retrievers based on their performance with these pseudo-relevant signals. Significantly, this strategy is the first to depend exclusively on the target corpus data, removing the necessity for training data and test labels. We assessed the effectiveness of our approach by compiling a comprehensive pool of cutting-edge dense retrievers and comparing our method against traditional dense retriever selection benchmarks. The findings reveal that our proposed solution surpasses the existing benchmarks in both the selection and ranking of dense retrievers.
Abstract:Overfitting to the source domain is a common issue in gradient-based training of deep neural networks. To compensate for the over-parameterized models, numerous regularization techniques have been introduced such as those based on dropout. While these methods achieve significant improvements on classical benchmarks such as ImageNet, their performance diminishes with the introduction of domain shift in the test set i.e. when the unseen data comes from a significantly different distribution. In this paper, we move away from the classical approach of Bernoulli sampled dropout mask construction and propose to base the selection on gradient-signal-to-noise ratio (GSNR) of network's parameters. Specifically, at each training step, parameters with high GSNR will be discarded. Furthermore, we alleviate the burden of manually searching for the optimal dropout ratio by leveraging a meta-learning approach. We evaluate our method on standard domain generalization benchmarks and achieve competitive results on classification and face anti-spoofing problems.
Abstract:We propose the new problem of choosing which dense retrieval model to use when searching on a new collection for which no labels are available, i.e. in a zero-shot setting. Many dense retrieval models are readily available. Each model however is characterized by very differing search effectiveness -- not just on the test portion of the datasets in which the dense representations have been learned but, importantly, also across different datasets for which data was not used to learn the dense representations. This is because dense retrievers typically require training on a large amount of labeled data to achieve satisfactory search effectiveness in a specific dataset or domain. Moreover, effectiveness gains obtained by dense retrievers on datasets for which they are able to observe labels during training, do not necessarily generalise to datasets that have not been observed during training. This is however a hard problem: through empirical experimentation we show that methods inspired by recent work in unsupervised performance evaluation with the presence of domain shift in the area of computer vision and machine learning are not effective for choosing highly performing dense retrievers in our setup. The availability of reliable methods for the selection of dense retrieval models in zero-shot settings that do not require the collection of labels for evaluation would allow to streamline the widespread adoption of dense retrieval. This is therefore an important new problem we believe the information retrieval community should consider. Implementation of methods, along with raw result files and analysis scripts are made publicly available at https://www.github.com/anonymized.
Abstract:Unsupervised domain adaptation (DA) with the aid of pseudo labeling techniques has emerged as a crucial approach for domain-adaptive 3D object detection. While effective, existing DA methods suffer from a substantial drop in performance when applied to a multi-class training setting, due to the co-existence of low-quality pseudo labels and class imbalance issues. In this paper, we address this challenge by proposing a novel ReDB framework tailored for learning to detect all classes at once. Our approach produces Reliable, Diverse, and class-Balanced pseudo 3D boxes to iteratively guide the self-training on a distributionally different target domain. To alleviate disruptions caused by the environmental discrepancy (e.g., beam numbers), the proposed cross-domain examination (CDE) assesses the correctness of pseudo labels by copy-pasting target instances into a source environment and measuring the prediction consistency. To reduce computational overhead and mitigate the object shift (e.g., scales and point densities), we design an overlapped boxes counting (OBC) metric that allows to uniformly downsample pseudo-labeled objects across different geometric characteristics. To confront the issue of inter-class imbalance, we progressively augment the target point clouds with a class-balanced set of pseudo-labeled target instances and source objects, which boosts recognition accuracies on both frequently appearing and rare classes. Experimental results on three benchmark datasets using both voxel-based (i.e., SECOND) and point-based 3D detectors (i.e., PointRCNN) demonstrate that our proposed ReDB approach outperforms existing 3D domain adaptation methods by a large margin, improving 23.15% mAP on the nuScenes $\rightarrow$ KITTI task.