Abstract:Visual speech recognition (VSR), commonly known as lip reading, has garnered significant attention due to its wide-ranging practical applications. The advent of deep learning techniques and advancements in hardware capabilities have significantly enhanced the performance of lip reading models. Despite these advancements, existing datasets predominantly feature stable video recordings with limited variability in lip movements. This limitation results in models that are highly sensitive to variations encountered in real-world scenarios. To address this issue, we propose a novel framework, LipGen, which aims to improve model robustness by leveraging speech-driven synthetic visual data, thereby mitigating the constraints of current datasets. Additionally, we introduce an auxiliary task that incorporates viseme classification alongside attention mechanisms. This approach facilitates the efficient integration of temporal information, directing the model's focus toward the relevant segments of speech, thereby enhancing discriminative capabilities. Our method demonstrates superior performance compared to the current state-of-the-art on the lip reading in the wild (LRW) dataset and exhibits even more pronounced advantages under challenging conditions.
Abstract:In this paper, we present an advanced strategy for the coordinated control of a multi-agent aerospace system, utilizing Deep Neural Networks (DNNs) within a reinforcement learning framework. Our approach centers on optimizing autonomous task assignment to enhance the system's operational efficiency in object relocation tasks, framed as an aerospace-oriented pick-and-place scenario. By modeling this coordination challenge within a MuJoCo environment, we employ a deep reinforcement learning algorithm to train a DNN-based policy to maximize task completion rates across the multi-agent system. The objective function is explicitly designed to maximize effective object transfer rates, leveraging neural network capabilities to handle complex state and action spaces in high-dimensional aerospace environments. Through extensive simulation, we benchmark the proposed method against a heuristic combinatorial approach rooted in game-theoretic principles, demonstrating a marked performance improvement, with the trained policy achieving up to 16\% higher task efficiency. Experimental validation is conducted on a multi-agent hardware setup to substantiate the efficacy of our approach in a real-world aerospace scenario.
Abstract:Recent work on human animation usually involves audio, pose, or movement maps conditions, thereby achieves vivid animation quality. However, these methods often face practical challenges due to extra control conditions, cumbersome condition injection modules, or limitation to head region driving. Hence, we ask if it is possible to achieve striking half-body human animation while simplifying unnecessary conditions. To this end, we propose a half-body human animation method, dubbed EchoMimicV2, that leverages a novel Audio-Pose Dynamic Harmonization strategy, including Pose Sampling and Audio Diffusion, to enhance half-body details, facial and gestural expressiveness, and meanwhile reduce conditions redundancy. To compensate for the scarcity of half-body data, we utilize Head Partial Attention to seamlessly accommodate headshot data into our training framework, which can be omitted during inference, providing a free lunch for animation. Furthermore, we design the Phase-specific Denoising Loss to guide motion, detail, and low-level quality for animation in specific phases, respectively. Besides, we also present a novel benchmark for evaluating the effectiveness of half-body human animation. Extensive experiments and analyses demonstrate that EchoMimicV2 surpasses existing methods in both quantitative and qualitative evaluations.
Abstract:End-to-end autonomous driving demonstrates strong planning capabilities with large-scale data but still struggles in complex, rare scenarios due to limited commonsense. In contrast, Large Vision-Language Models (LVLMs) excel in scene understanding and reasoning. The path forward lies in merging the strengths of both approaches. Previous methods using LVLMs to predict trajectories or control signals yield suboptimal results, as LVLMs are not well-suited for precise numerical predictions. This paper presents Senna, an autonomous driving system combining an LVLM (Senna-VLM) with an end-to-end model (Senna-E2E). Senna decouples high-level planning from low-level trajectory prediction. Senna-VLM generates planning decisions in natural language, while Senna-E2E predicts precise trajectories. Senna-VLM utilizes a multi-image encoding approach and multi-view prompts for efficient scene understanding. Besides, we introduce planning-oriented QAs alongside a three-stage training strategy, which enhances Senna-VLM's planning performance while preserving commonsense. Extensive experiments on two datasets show that Senna achieves state-of-the-art planning performance. Notably, with pre-training on a large-scale dataset DriveX and fine-tuning on nuScenes, Senna significantly reduces average planning error by 27.12% and collision rate by 33.33% over model without pre-training. We believe Senna's cross-scenario generalization and transferability are essential for achieving fully autonomous driving. Code and models will be released at https://github.com/hustvl/Senna.
Abstract:In this paper, we propose HE-Drive: the first human-like-centric end-to-end autonomous driving system to generate trajectories that are both temporally consistent and comfortable. Recent studies have shown that imitation learning-based planners and learning-based trajectory scorers can effectively generate and select accuracy trajectories that closely mimic expert demonstrations. However, such trajectory planners and scorers face the dilemma of generating temporally inconsistent and uncomfortable trajectories. To solve the above problems, Our HE-Drive first extracts key 3D spatial representations through sparse perception, which then serves as conditional inputs for a Conditional Denoising Diffusion Probabilistic Models (DDPMs)-based motion planner to generate temporal consistency multi-modal trajectories. A Vision-Language Models (VLMs)-guided trajectory scorer subsequently selects the most comfortable trajectory from these candidates to control the vehicle, ensuring human-like end-to-end driving. Experiments show that HE-Drive not only achieves state-of-the-art performance (i.e., reduces the average collision rate by 71% than VAD) and efficiency (i.e., 1.9X faster than SparseDrive) on the challenging nuScenes and OpenScene datasets but also provides the most comfortable driving experience on real-world data.For more information, visit the project website: https://jmwang0117.github.io/HE-Drive/.
Abstract:3D semantic occupancy prediction networks have demonstrated remarkable capabilities in reconstructing the geometric and semantic structure of 3D scenes, providing crucial information for robot navigation and autonomous driving systems. However, due to their large overhead from dense network structure designs, existing networks face challenges balancing accuracy and latency.In this paper, we introduce OccRWKV, an efficient semantic occupancy network inspired by Receptance Weighted Key Value (RWKV). OccRWKV separates semantics, occupancy prediction, and feature fusion into distinct branches, each incorporating Sem-RWKV and Geo-RWKV blocks. These blocks are designed to capture long-range dependencies, enabling the network to learn domain-specific representation (i.e., semantics and geometry), which enhances prediction accuracy. Leveraging the sparse nature of real-world 3D occupancy, we reduce computational overhead by projecting features into the bird's-eye view (BEV) space and propose a BEV-RWKV block for efficient feature enhancement and fusion. This enables real-time inference at 22.2 FPS without compromising performance. Experiments demonstrate that OccRWKV outperforms the state-of-the-art methods on the SemanticKITTI dataset, achieving a mIoU of 25.1 while being 20 times faster than the best baseline, Co-Occ, making it suitable for real-time deployment on robots to enhance autonomous navigation efficiency. Code and video are available on our project page: \url{https://jmwang0117.github.io/OccRWKV/}.
Abstract:Autonomous indoor navigation of UAVs presents numerous challenges, primarily due to the limited precision of GPS in enclosed environments. Additionally, UAVs' limited capacity to carry heavy or power-intensive sensors, such as overheight packages, exacerbates the difficulty of achieving autonomous navigation indoors. This paper introduces an advanced system in which a drone autonomously navigates indoor spaces to locate a specific target, such as an unknown Amazon package, using only a single camera. Employing a deep learning approach, a deep reinforcement adaptive learning algorithm is trained to develop a control strategy that emulates the decision-making process of an expert pilot. We demonstrate the efficacy of our system through real-time simulations conducted in various indoor settings. We apply multiple visualization techniques to gain deeper insights into our trained network. Furthermore, we extend our approach to include an adaptive control algorithm for coordinating multiple drones to lift an object in an indoor environment collaboratively. Integrating our DRAL algorithm enables multiple UAVs to learn optimal control strategies that adapt to dynamic conditions and uncertainties. This innovation enhances the robustness and flexibility of indoor navigation and opens new possibilities for complex multi-drone operations in confined spaces. The proposed framework highlights significant advancements in adaptive control and deep reinforcement learning, offering robust solutions for complex multi-agent systems in real-world applications.
Abstract:Artificial intelligence (AI) is rapidly advancing in healthcare, enhancing the efficiency and effectiveness of services across various specialties, including cardiology, ophthalmology, dermatology, emergency medicine, etc. AI applications have significantly improved diagnostic accuracy, treatment personalization, and patient outcome predictions by leveraging technologies such as machine learning, neural networks, and natural language processing. However, these advancements also introduce substantial ethical and fairness challenges, particularly related to biases in data and algorithms. These biases can lead to disparities in healthcare delivery, affecting diagnostic accuracy and treatment outcomes across different demographic groups. This survey paper examines the integration of AI in healthcare, highlighting critical challenges related to bias and exploring strategies for mitigation. We emphasize the necessity of diverse datasets, fairness-aware algorithms, and regulatory frameworks to ensure equitable healthcare delivery. The paper concludes with recommendations for future research, advocating for interdisciplinary approaches, transparency in AI decision-making, and the development of innovative and inclusive AI applications.
Abstract:Long-term time series forecasting is a long-standing challenge in various applications. A central issue in time series forecasting is that methods should expressively capture long-term dependency. Furthermore, time series forecasting methods should be flexible when applied to different scenarios. Although Fourier analysis offers an alternative to effectively capture reusable and periodic patterns to achieve long-term forecasting in different scenarios, existing methods often assume high-frequency components represent noise and should be discarded in time series forecasting. However, we conduct a series of motivation experiments and discover that the role of certain frequencies varies depending on the scenarios. In some scenarios, removing high-frequency components from the original time series can improve the forecasting performance, while in others scenarios, removing them is harmful to forecasting performance. Therefore, it is necessary to treat the frequencies differently according to specific scenarios. To achieve this, we first reformulate the time series forecasting problem as learning a transfer function of each frequency in the Fourier domain. Further, we design Frequency Dynamic Fusion (FreDF), which individually predicts each Fourier component, and dynamically fuses the output of different frequencies. Moreover, we provide a novel insight into the generalization ability of time series forecasting and propose the generalization bound of time series forecasting. Then we prove FreDF has a lower bound, indicating that FreDF has better generalization ability. Extensive experiments conducted on multiple benchmark datasets and ablation studies demonstrate the effectiveness of FreDF.
Abstract:In contemporary control theory, self-adaptive methodologies are highly esteemed for their inherent flexibility and robustness in managing modeling uncertainties. Particularly, robust adaptive control stands out owing to its potent capability of leveraging robust optimization algorithms to approximate cost functions and relax the stringent constraints often associated with conventional self-adaptive control paradigms. Deep learning methods, characterized by their extensive layered architecture, offer significantly enhanced approximation prowess. Notwithstanding, the implementation of deep learning is replete with challenges, particularly the phenomena of vanishing and exploding gradients encountered during the training process. This paper introduces a self-adaptive control scheme integrating a deep MPC, governed by an innovative weight update law designed to mitigate the vanishing and exploding gradient predicament by employing the gradient sign exclusively. The proffered controller is a self-adaptive dynamic inversion mechanism, integrating an augmented state observer within an auxiliary estimation circuit to enhance the training phase. This approach enables the deep MPC to learn the entire plant model in real-time and the efficacy of the controller is demonstrated through simulations involving a high-DoF robot manipulator, wherein the controller adeptly learns the nonlinear plant dynamics expeditiously and exhibits commendable performance in the motion planning task.