Abstract:Visual speech recognition (VSR), commonly known as lip reading, has garnered significant attention due to its wide-ranging practical applications. The advent of deep learning techniques and advancements in hardware capabilities have significantly enhanced the performance of lip reading models. Despite these advancements, existing datasets predominantly feature stable video recordings with limited variability in lip movements. This limitation results in models that are highly sensitive to variations encountered in real-world scenarios. To address this issue, we propose a novel framework, LipGen, which aims to improve model robustness by leveraging speech-driven synthetic visual data, thereby mitigating the constraints of current datasets. Additionally, we introduce an auxiliary task that incorporates viseme classification alongside attention mechanisms. This approach facilitates the efficient integration of temporal information, directing the model's focus toward the relevant segments of speech, thereby enhancing discriminative capabilities. Our method demonstrates superior performance compared to the current state-of-the-art on the lip reading in the wild (LRW) dataset and exhibits even more pronounced advantages under challenging conditions.
Abstract:Lip reading, the process of interpreting silent speech from visual lip movements, has gained rising attention for its wide range of realistic applications. Deep learning approaches greatly improve current lip reading systems. However, lip reading in cross-speaker scenarios where the speaker identity changes, poses a challenging problem due to inter-speaker variability. A well-trained lip reading system may perform poorly when handling a brand new speaker. To learn a speaker-robust lip reading model, a key insight is to reduce visual variations across speakers, avoiding the model overfitting to specific speakers. In this work, in view of both input visual clues and latent representations based on a hybrid CTC/attention architecture, we propose to exploit the lip landmark-guided fine-grained visual clues instead of frequently-used mouth-cropped images as input features, diminishing speaker-specific appearance characteristics. Furthermore, a max-min mutual information regularization approach is proposed to capture speaker-insensitive latent representations. Experimental evaluations on public lip reading datasets demonstrate the effectiveness of the proposed approach under the intra-speaker and inter-speaker conditions.
Abstract:The task of vision-and-language navigation in continuous environments (VLN-CE) aims at training an autonomous agent to perform low-level actions to navigate through 3D continuous surroundings using visual observations and language instructions. The significant potential of VLN-CE for mobile robots has been demonstrated across a large number of studies. However, most existing works in VLN-CE focus primarily on transferring the standard discrete vision-and-language navigation (VLN) methods to continuous environments, overlooking the problem of collisions. Such oversight often results in the agent deviating from the planned path or, in severe instances, the agent being trapped in obstacle areas and failing the navigational task. To address the above-mentioned issues, this paper investigates various collision scenarios within VLN-CE and proposes a classification method to predicate the underlying causes of collisions. Furthermore, a new VLN-CE algorithm, named Safe-VLN, is proposed to bolster collision avoidance capabilities including two key components, i.e., a waypoint predictor and a navigator. In particular, the waypoint predictor leverages a simulated 2D LiDAR occupancy mask to prevent the predicted waypoints from being situated in obstacle-ridden areas. The navigator, on the other hand, employs the strategy of `re-selection after collision' to prevent the robot agent from becoming ensnared in a cycle of perpetual collisions. The proposed Safe-VLN is evaluated on the R2R-CE, the results of which demonstrate an enhanced navigational performance and a statistically significant reduction in collision incidences.
Abstract:Cross-modal alignment is one key challenge for Vision-and-Language Navigation (VLN). Most existing studies concentrate on mapping the global instruction or single sub-instruction to the corresponding trajectory. However, another critical problem of achieving fine-grained alignment at the entity level is seldom considered. To address this problem, we propose a novel Grounded Entity-Landmark Adaptive (GELA) pre-training paradigm for VLN tasks. To achieve the adaptive pre-training paradigm, we first introduce grounded entity-landmark human annotations into the Room-to-Room (R2R) dataset, named GEL-R2R. Additionally, we adopt three grounded entity-landmark adaptive pre-training objectives: 1) entity phrase prediction, 2) landmark bounding box prediction, and 3) entity-landmark semantic alignment, which explicitly supervise the learning of fine-grained cross-modal alignment between entity phrases and environment landmarks. Finally, we validate our model on two downstream benchmarks: VLN with descriptive instructions (R2R) and dialogue instructions (CVDN). The comprehensive experiments show that our GELA model achieves state-of-the-art results on both tasks, demonstrating its effectiveness and generalizability.