Spring
Abstract:Obstacle sensing is essential for terahertz (THz) communication since the subsequent beam management can avoid THz signals blocked by the obstacles. In parallel, radio environment, which can be manifested by channel knowledge such as the distribution of received signal strength (RSS), reveals signal propagation situation and the corresponding obstacle information. However, the awareness of the radio environment for obstacle sensing is challenging in practice, as the sparsely deployed THz sensors can acquire only little a priori knowledge with their RSS measurements. Therefore, we formulate in this paper a radio environment awareness problem, which for the first time considers a probability distribution of obstacle attributes. To solve such a problem, we propose a THz-based generative radio environment awareness framework, in which obstacle information is obtained directly from the aware radio environment. We also propose a novel generative model based on conditional generative adversarial network (CGAN), where U-net and the objective function of the problem are introduced to enable accurate awareness of RSS distribution. Simulation results show that the proposed framework can improve the awareness of the radio environment, and thus achieve superior sensing performance in terms of average precision regarding obstacles' shape and location.
Abstract:Recent advancements in large language models (LLMs) have led to significant successes across various applications, where the most noticeable is to a series of emerging capabilities, particularly in the areas of In-Context Learning (ICL) and Chain-of-Thought (CoT). To better understand and control model performance, many studies have begun investigating the underlying causes of these phenomena and their impact on task outcomes. However, existing explanatory frameworks predominantly focus on isolating and explaining ICL and CoT independently, leading to an incomplete understanding of their combined influence on model performance. To address this gap, we propose the Electronic Circuit Model (ECM), which provides a foundation for developing scalable, learnable policies and improving the management of AI-generated content. Specifically, ECM conceptualizes model behavior as an electronic circuit: ICL is represented as semantic magnetic field to providing an additional voltage following Faraday's Law, while CoT is modeled as series resistors to constrain the model output performance following Ohm's Law. Experimental results demonstrate that the ECM effectively predicts and explains LLM performance across a variety of prompting strategies. Furthermore, we apply ECM to advanced reasoning strategy optimization on a series of tasks, such as the International Olympiad in Informatics (IOI) and the International Mathematical Olympiad (IMO), achieving competitive performance that surpasses nearly 80% of top human competitors.
Abstract:Movable antennas (MAs) show great promise for enhancing the sensing capabilities of future sixth-generation (6G) networks. With the growing prevalence of near-field propagation at ultra-high frequencies, this paper focuses on the application of MAs for near-field sensing to jointly estimate the angle and distance information of a target. First, to gain essential insights into MA-enhanced near-field sensing, we investigate two simplified cases with only the spatial angle-of-arrival (AoA) or distance estimation, respectively, assuming that the other information is already known. We derive the worst-case Cramer-Rao bounds (CRBs) on the mean square errors (MSEs) of the AoA estimation and the distance estimation via the multiple signal classification (MUSIC) algorithm in these two cases. Then, we jointly optimize the positions of the MAs within a linear array to minimize these CRBs and derive their closed-form solutions, which yield an identical array geometry to MA-aided far-field sensing. Furthermore, we proceed to the more challenging case with the joint AoA and distance estimation and derive the worst-case CRB under the two-dimensional (2D) MUSIC algorithm. The corresponding CRB minimization problem is efficiently solved by adopting a discrete sampling-based approach. Numerical results demonstrate that the proposed MA-enhanced near-field sensing significantly outperforms conventional sensing with fixed-position antennas (FPAs). Moreover, the joint angle and distance estimation results in a different array geometry from that in the individual estimation of angle or distance.
Abstract:We introduce Sundial, a family of native, flexible, and scalable time series foundation models. To predict the next-patch's distribution, we propose a TimeFlow Loss based on flow-matching, which facilitates native pre-training of Transformers on time series without discrete tokenization. Conditioned on arbitrary-length time series, our model is pre-trained without specifying any prior distribution and can generate multiple probable predictions, achieving flexibility in representation learning beyond using parametric densities. Towards time series foundation models, we leverage minimal but crucial adaptations of Transformers and curate TimeBench with 1 trillion time points, comprising mostly real-world datasets and synthetic data. By mitigating mode collapse through TimeFlow Loss, we pre-train a family of Sundial models on TimeBench, which exhibit unprecedented model capacity and generalization performance on zero-shot forecasting. In addition to presenting good scaling behavior, Sundial achieves new state-of-the-art on both point forecasting and probabilistic forecasting benchmarks. We believe that Sundial's pioneering generative paradigm will facilitate a wide variety of forecasting scenarios.
Abstract:Exemplar-free class incremental learning (EF-CIL) is a nontrivial task that requires continuously enriching model capability with new classes while maintaining previously learned knowledge without storing and replaying any old class exemplars. An emerging theory-guided framework for CIL trains task-specific models for a shared network, shifting the pressure of forgetting to task-id prediction. In EF-CIL, task-id prediction is more challenging due to the lack of inter-task interaction (e.g., replays of exemplars). To address this issue, we conduct a theoretical analysis of the importance and feasibility of preserving a discriminative and consistent feature space, upon which we propose a novel method termed DCNet. Concretely, it progressively maps class representations into a hyperspherical space, in which different classes are orthogonally distributed to achieve ample inter-class separation. Meanwhile, it also introduces compensatory training to adaptively adjust supervision intensity, thereby aligning the degree of intra-class aggregation. Extensive experiments and theoretical analysis verified the superiority of the proposed DCNet.
Abstract:Reconfigurable intelligent surfaces (RISs) can be densely deployed in the environment to create multi-reflection line-of-sight (LoS) links for signal coverage enhancement. However, conventional reflection-only RISs can only achieve half-space reflection, which limits the LoS path diversity. In contrast, simultaneously transmitting and reflecting RISs (STAR-RISs) can achieve full-space reflection and transmission, thereby creating more LoS paths. Hence, in this paper, we study a new multi-STAR-RIS-aided communication system, where a multi-antenna base station (BS) transmits to multiple single-antenna users by exploiting the signal beam routing over a set of cascaded LoS paths each formed by multiple STAR-RISs. To reveal essential insights, we first consider a simplified single-user case, aiming to maximize its received signal power by jointly optimizing the active beamforming at the BS, the BS's power allocation over different paths, the number of selected beam-routing paths, the selected STAR-RISs for each path, as well as their amplitude and phase shifts for transmission/reflection. However, this problem is difficult to be optimally solved as different paths may be intricately coupled at their shared STAR-RISs. To tackle this difficulty, we first derive the optimal solution to this problem in closed-form for a given set of paths. The clique-based approach in graph theory is then applied to solve the remaining multi-path selection problem efficiently. Next, we extend the proposed clique-based method to the multi-user case to maximize the minimum received signal power among all users, subject to additional constraints on the disjointness of the selected paths for different users. Simulation results show that our proposed STAR-RIS-enabled beam routing outperforms the conventional beam routing with reflection-only RISs in both single- and multi-user cases.
Abstract:Acoustic Scene Classification (ASC) identifies an environment based on an audio signal. This paper explores ASC in low-resource conditions and proposes a novel model, DS-FlexiNet, which combines depthwise separable convolutions from MobileNetV2 with ResNet-inspired residual connections for a balance of efficiency and accuracy. To address hardware limitations and device heterogeneity, DS-FlexiNet employs Quantization Aware Training (QAT) for model compression and data augmentation methods like Auto Device Impulse Response (ADIR) and Freq-MixStyle (FMS) to improve cross-device generalization. Knowledge Distillation (KD) from twelve teacher models further enhances performance on unseen devices. The architecture includes a custom Residual Normalization layer to handle domain differences across devices, and depthwise separable convolutions reduce computational overhead without sacrificing feature representation. Experimental results show that DS-FlexiNet excels in both adaptability and performance under resource-constrained conditions.
Abstract:Nowadays, research on GUI agents is a hot topic in the AI community. However, current research focuses on GUI task automation, limiting the scope of applications in various GUI scenarios. In this paper, we propose a formalized and comprehensive environment to evaluate the entire process of automated GUI Testing (GTArena), offering a fair, standardized environment for consistent operation of diverse multimodal large language models. We divide the testing process into three key subtasks: test intention generation, test task execution, and GUI defect detection, and construct a benchmark dataset based on these to conduct a comprehensive evaluation. It evaluates the performance of different models using three data types: real mobile applications, mobile applications with artificially injected defects, and synthetic data, thoroughly assessing their capabilities in this relevant task. Additionally, we propose a method that helps researchers explore the correlation between the performance of multimodal language large models in specific scenarios and their general capabilities in standard benchmark tests. Experimental results indicate that even the most advanced models struggle to perform well across all sub-tasks of automated GUI Testing, highlighting a significant gap between the current capabilities of Autonomous GUI Testing and its practical, real-world applicability. This gap provides guidance for the future direction of GUI Agent development. Our code is available at https://github.com/ZJU-ACES-ISE/ChatUITest.
Abstract:Intelligent reflecting surface (IRS) is composed of numerous passive reflecting elements and can be mounted on unmanned aerial vehicles (UAVs) to achieve six-dimensional (6D) movement by adjusting the UAV's three-dimensional (3D) location and 3D orientation simultaneously. Hence, in this paper, we investigate a new UAV-enabled passive 6D movable antenna (6DMA) architecture by mounting an IRS on a UAV and address the associated joint deployment and beamforming optimization problem. In particular, we consider a passive 6DMA-aided multicast system with a multi-antenna base station (BS) and multiple remote users, aiming to jointly optimize the IRS's location and 3D orientation, as well as its passive beamforming to maximize the minimum received signal-to-noise ratio (SNR) among all users under the practical angle-dependent signal reflection model. However, this optimization problem is challenging to be optimally solved due to the intricate relationship between the users' SNRs and the IRS's location and orientation. To tackle this challenge, we first focus on a simplified case with a single user, showing that one-dimensional (1D) orientation suffices to achieve the optimal performance. Next, we show that for any given IRS's location, the optimal 1D orientation can be derived in closed form, based on which several useful insights are drawn. To solve the max-min SNR problem in the general multi-user case, we propose an alternating optimization (AO) algorithm by alternately optimizing the IRS's beamforming and location/orientation via successive convex approximation (SCA) and hybrid coarse- and fine-grained search, respectively. To avoid undesirable local sub-optimal solutions, a Gibbs sampling (GS) method is proposed to generate new IRS locations and orientations for exploration in each AO iteration. Numerical results validate our theoretical analyses.
Abstract:The increasing context window size in Large Language Models (LLMs), such as the GPT and LLaMA series, has improved their ability to tackle complex, long-text tasks, but at the cost of inference efficiency, particularly regarding memory and computational complexity. Existing methods, including selective token retention and window-based attention, improve efficiency but risk discarding important tokens needed for future text generation. In this paper, we propose an approach that enhances LLM efficiency without token loss by reducing the memory and computational load of less important tokens, rather than discarding them.We address two challenges: 1) investigating the distribution of important tokens in the context, discovering recent tokens are more important than distant tokens in context, and 2) optimizing resources for distant tokens by sharing attention scores across layers. The experiments show that our method saves $35\%$ KV cache without compromising the performance.