Abstract:Large Language Models (LLMs) have the potential to revolutionize the Sixth Generation (6G) communication networks. However, current mainstream LLMs generally lack the specialized knowledge in telecom domain. In this paper, for the first time, we propose a pipeline to adapt any general purpose LLMs to a telecom-specific LLMs. We collect and build telecom-specific pre-train dataset, instruction dataset, preference dataset to perform continual pre-training, instruct tuning and alignment tuning respectively. Besides, due to the lack of widely accepted evaluation benchmarks in telecom domain, we extend existing evaluation benchmarks and proposed three new benchmarks, namely, Telecom Math Modeling, Telecom Open QnA and Telecom Code Tasks. These new benchmarks provide a holistic evaluation of the capabilities of LLMs including math modeling, Open-Ended question answering, code generation, infilling, summarization and analysis in telecom domain. Our fine-tuned LLM TelecomGPT outperforms state of the art (SOTA) LLMs including GPT-4, Llama-3 and Mistral in Telecom Math Modeling benchmark significantly and achieve comparable performance in various evaluation benchmarks such as TeleQnA, 3GPP technical documents classification, telecom code summary and generation and infilling.
Abstract:While traditional optimization and scheduling schemes are designed to meet fixed, predefined system requirements, future systems are moving toward user-driven approaches and personalized services, aiming to achieve high quality-of-experience (QoE) and flexibility. This challenge is particularly pronounced in wireless and digitalized energy networks, where users' requirements have largely not been taken into consideration due to the lack of a common language between users and machines. The emergence of powerful large language models (LLMs) marks a radical departure from traditional system-centric methods into more advanced user-centric approaches by providing a natural communication interface between users and devices. In this paper, for the first time, we introduce a novel architecture for resource scheduling problems by constructing three LLM agents to convert an arbitrary user's voice request (VRQ) into a resource allocation vector. Specifically, we design an LLM intent recognition agent to translate the request into an optimization problem (OP), an LLM OP parameter identification agent, and an LLM OP solving agent. To evaluate system performance, we construct a database of typical VRQs in the context of electric vehicle (EV) charging. As a proof of concept, we primarily use Llama 3 8B. Through testing with different prompt engineering scenarios, the obtained results demonstrate the efficiency of the proposed architecture. The conducted performance analysis allows key insights to be extracted. For instance, having a larger set of candidate OPs to model the real-world problem might degrade the final performance because of a higher recognition/OP classification noise level. All results and codes are open source.
Abstract:Over the past two decades, the Internet-of-Things (IoT) has been a transformative concept, and as we approach 2030, a new paradigm known as the Internet of Senses (IoS) is emerging. Unlike conventional Virtual Reality (VR), IoS seeks to provide multi-sensory experiences, acknowledging that in our physical reality, our perception extends far beyond just sight and sound; it encompasses a range of senses. This article explores existing technologies driving immersive multi-sensory media, delving into their capabilities and potential applications. This exploration includes a comparative analysis between conventional immersive media streaming and a proposed use case that leverages semantic communication empowered by generative Artificial Intelligence (AI). The focal point of this analysis is the substantial reduction in bandwidth consumption by 99.93% in the proposed scheme. Through this comparison, we aim to underscore the practical applications of generative AI for immersive media while addressing the challenges and outlining future trajectories.
Abstract:Generative artificial intelligence (GenAI) and communication networks are expected to have groundbreaking synergies in 6G. Connecting GenAI agents over a wireless network can potentially unleash the power of collective intelligence and pave the way for artificial general intelligence (AGI). However, current wireless networks are designed as a "data pipe" and are not suited to accommodate and leverage the power of GenAI. In this paper, we propose the GenAINet framework in which distributed GenAI agents communicate knowledge (high-level concepts or abstracts) to accomplish arbitrary tasks. We first provide a network architecture integrating GenAI capabilities to manage both network protocols and applications. Building on this, we investigate effective communication and reasoning problems by proposing a semantic-native GenAINet. Specifically, GenAI agents extract semantic concepts from multi-modal raw data, build a knowledgebase representing their semantic relations, which is retrieved by GenAI models for planning and reasoning. Under this paradigm, an agent can learn fast from other agents' experience for making better decisions with efficient communications. Furthermore, we conduct two case studies where in wireless device query, we show that extracting and transferring knowledge can improve query accuracy with reduced communication; and in wireless power control, we show that distributed agents can improve decisions via collaborative reasoning. Finally, we address that developing a hierarchical semantic level Telecom world model is a key path towards network of collective intelligence.
Abstract:The evolution of generative artificial intelligence (GenAI) constitutes a turning point in reshaping the future of technology in different aspects. Wireless networks in particular, with the blooming of self-evolving networks, represent a rich field for exploiting GenAI and reaping several benefits that can fundamentally change the way how wireless networks are designed and operated nowadays. To be specific, large language models (LLMs), a subfield of GenAI, are envisioned to open up a new era of autonomous wireless networks, in which a multimodal large model trained over various Telecom data, can be fine-tuned to perform several downstream tasks, eliminating the need for dedicated AI models for each task and paving the way for the realization of artificial general intelligence (AGI)-empowered wireless networks. In this article, we aim to unfold the opportunities that can be reaped from integrating LLMs into the Telecom domain. In particular, we aim to put a forward-looking vision on a new realm of possibilities and applications of LLMs in future wireless networks, defining directions for designing, training, testing, and deploying Telecom LLMs, and reveal insights on the associated theoretical and practical challenges.
Abstract:The recent progress of artificial intelligence (AI) opens up new frontiers in the possibility of automating many tasks involved in Telecom networks design, implementation, and deployment. This has been further pushed forward with the evolution of generative artificial intelligence (AI), including the emergence of large language models (LLMs), which is believed to be the cornerstone toward realizing self-governed, interactive AI agents. Motivated by this, in this paper, we aim to adapt the paradigm of LLMs to the Telecom domain. In particular, we fine-tune several LLMs including BERT, distilled BERT, RoBERTa and GPT-2, to the Telecom domain languages, and demonstrate a use case for identifying the 3rd Generation Partnership Project (3GPP) standard working groups. We consider training the selected models on 3GPP technical documents (Tdoc) pertinent to years 2009-2019 and predict the Tdoc categories in years 2020-2023. The results demonstrate that fine-tuning BERT and RoBERTa model achieves 84.6% accuracy, while GPT-2 model achieves 83% in identifying 3GPP working groups. The distilled BERT model with around 50% less parameters achieves similar performance as others. This corroborates that fine-tuning pretrained LLM can effectively identify the categories of Telecom language. The developed framework shows a stepping stone towards realizing intent-driven and self-evolving wireless networks from Telecom languages, and paves the way for the implementation of generative AI in the Telecom domain.
Abstract:The advancements of mixed reality services, with the evolution of network virtualization and native artificial intelligence (AI) paradigms, have conceptualized the vision of future wireless networks as a comprehensive entity operating in whole over a digital platform, with smart interaction with the physical domain, paving the way for the blooming of the Digital Twin (DT) concept. The recent interest in the DT networks is fueled by the emergence of novel wireless technologies and use-cases, that exacerbate the level of complexity to orchestrate the network and to manage its resources. Driven by the internet-of-sensing and AI, the key principle of the DT is to create a virtual twin for the physical entities and network dynamics, where the virtual twin will be leveraged to generate synthetic data, in addition to the received sensed data from the physical twin in an on-demand manner. The available data at the twin will be the foundation for AI models training and intelligent inference process. Despite the common understanding that AI is the seed for DT, we anticipate the DT and AI will be enablers for each other, in a way that overcome their limitations and complement each other benefits. In this article, we dig into the fundamentals of DT, where we reveal the role of DT in unifying model-driven and data-driven approaches, and explore the opportunities offered by DT in order to achieve the optimistic vision of 6G networks. We further unfold the essential role of the theoretical underpinnings in unlocking further opportunities by AI, and hence, we unveil their pivotal impact on the realization of reliable, efficient, and low-latency DT. Finally, we identify the limitations of AI-DT and overview potential future research directions, to open the floor for further exploration in AI for DT and DT for AI.
Abstract:The research in the sixth generation of communication networks needs to tackle new challenges in order to meet the requirements of emerging applications in terms of high data rate, low latency, high reliability, and massive connectivity. To this end, the entire communication chain needs to be optimized, including the channel and the surrounding environment, as it is no longer sufficient to control the transmitter and/or the receiver only. Investigating large intelligent surfaces, ultra massive multiple-input-multiple-output, and smart constructive environments will contribute to this direction. In addition, to allow the exchange of high dimensional sensing data between connected intelligent devices, semantic and goal-oriented communications need to be considered for a more efficient and context-aware information encoding. In particular, for multi-agent systems, where agents are collaborating together to achieve a complex task, emergent communications, instead of hard-coded communications, can be learned for more efficient task execution and communication resources use. Moreover, the interaction between information theory and electromagnetism should be explored to better understand the physical limitations of different technologies, e.g, holographic communications. Another new communication paradigm is to consider the end-to-end approach instead of block-by-block optimization, which requires exploiting machine learning theory, non-linear signal processing theory, and non-coherent communications theory. Within this context, we identify ten scientific challenges for rebuilding the theoretical foundations of communications, and we overview each of the challenges while providing research opportunities and open questions for the research community.
Abstract:We propose an enhanced spatial modulation (SM)-based scheme for indoor visible light communication systems. This scheme enhances the achievable throughput of conventional SM schemes by transmitting higher order complex modulation symbol, which is decomposed into three different parts. These parts carry the amplitude, phase, and quadrant components of the complex symbol, which are then represented by unipolar pulse amplitude modulation (PAM) symbols. Superposition coding is exploited to allocate a fraction of the total power to each part before they are all multiplexed and transmitted simultaneously, exploiting the entire available bandwidth. At the receiver, a two-step decoding process is proposed to decode the active light emitting diode index before the complex symbol is retrieved. It is shown that at higher spectral efficiency values, the proposed modulation scheme outperforms conventional SM schemes with PAM symbols in terms of average symbol error rate (ASER), and hence, enhancing the system throughput. Furthermore, since the performance of the proposed modulation scheme is sensitive to the power allocation factors, we formulated an ASER optimization problem and propose a sub-optimal solution using successive convex programming (SCP). Notably, the proposed algorithm converges after only few iterations, whilst the performance with the optimized power allocation coefficients outperforms both random and fixed power allocation.
Abstract:In this letter, we investigate the performance of reconfigurable intelligent surface (RIS)-assisted communications, under the assumption of generalized Gaussian noise (GGN), over Rayleigh fading channels. Specifically, we consider an RIS, equipped with $N$ reflecting elements, and derive a novel closed-form expression for the symbol error rate (SER) of arbitrary modulation schemes. The usefulness of the derived new expression is that it can be used to capture the SER performance in the presence of special additive noise distributions such as Gamma, Laplacian, and Gaussian noise. These special cases are also considered and their associated asymptotic SER expressions are derived, and then employed to quantify the achievable diversity order of the system. The theoretical framework is corroborated by numerical results, which reveal that the shaping parameter of the GGN ($\alpha$) has a negligible effect on the diversity order of RIS-assisted systems, particularly for large $\alpha$ values. Accordingly, the maximum achievable diversity order is determined by $N$.